• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Automated CAST-R system helps to identify best antimicrobials to fight acute blood infections

Bioengineer by Bioengineer
April 19, 2022
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

When treating acute infections in patients, health care providers must be able to quickly and accurately identify the best antibiotics for fighting the infection.

The automated CAST-R workflow supports rapid and accurate treatment of pathogen infections in clinics

Credit: LIU Yang

When treating acute infections in patients, health care providers must be able to quickly and accurately identify the best antibiotics for fighting the infection.

A research team led by researchers from the Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT) of the Chinese Academy of Sciences (CAS) and Peking Union Medical College Hospital has developed an automated system that provides swift, accurate results for determining the best antibiotics at the right dose.

This automated system, the Clinical Antimicrobials Susceptibility Test Ramanometry (CAST-R), is based on Raman microspectroscopy, a spectroscopic technique that can identify specific molecules. It can offer great potential for the treatment of bloodstream infections in humans.

Their findings were published on April 18 in the journal mLife.

Conventional antimicrobial susceptibility tests (ASTs) have been the essential tool for specifically identifying which antibiotic is most effective in treating a particular bacteria or fungus. But they are time-consuming, labor-intensive and unstable.

Sepsis, a kind of acute blood infections, carries a 20~40% mortality rate, and each hour’s delay in obtaining AST report would raise mortality rate by 7.6%. Tigecycline is a last-resort antimicrobial used to treat blood infections. “Unfortunately, resistance to tigecycline has emerged in many blood pathogens,” said YANG Qiwen, senior author of the study and Associate Director of Department of Clinical Laboratory, Peking Union Medical College Hospital.

Conventional ASTs for tigecycline have been slow, tedious and even plagued by inaccuracy. The AST of tigecycline has a turn-round time of 36 to 48 hours, from positive blood culture to AST results. “Rapid and reliable methods for tigecycline resistance are urgent,” said ZHU Pengfei, a scientist with QIBEBT, CAS.

So, the research team employed tigecycline as its main model and established an automated system of CAST-R, using the D2O-probed Raman microspectroscopy technology to perform AST for bloodstream infections. CAST-R can help clinicians quickly determine which antibiotic drug to use and how much to prescribe.

The team’s process uses a liquid robot for sample pretreatment and a machine learning-based control scheme for acquiring the data and maintaining quality control. Each Single-Cell Raman Spectrum (SCRS) that their process produced contained thousands of Raman peaks providing rich information about cells, kind of like a molecular fingerprint of each cell.

In their tests, the three-hour CAST-R process achieved excellent accuracy and proved to be over ten times faster than the conventional AST process. Their process handled 96 paralleled antibiotic-exposure reactions and produced Raman spectra with quality equivalent to that achieved through the more time-consuming manual process. “The automation, speed, reliability, and broad applicability suggest CAST-R as a clinically valuable AST for bloodstream infections,” said REN Lihui, an associate professor at the QIBEBT, CAS.

“The strengths of a SCRS, which also include information richness, single-cell resolution, and ability to couple with downstream single-cell sequencing, have yet to be fully exploited in this study, and that will be our priority ahead,” said XU Jian, another senior author of the study and Director of Single-Cell Center at QIBEBT.

The team plans to explore these strengths and further improve the CAST-R process. “As we refine the CAST-R workflow process, our goal is to provide a series of new applications in clinical diagnosis based on microbial single-cell technologies, in order to combat superbugs and support personalized treatment of infections,” said YANG Qiwen.



Journal

mLife

DOI

10.1002/mlf2.12019

Article Title

Rapid, automated, and reliable antimicrobial susceptibility test from positive blood culture by CAST-R

Article Publication Date

18-Apr-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Key Genes Drive Organic Acid Accumulation in Cherry

Key Genes Drive Organic Acid Accumulation in Cherry

August 25, 2025
blank

Introducing a Breakthrough Tool to Monitor Infant Development Beginning at Just 16 Days Old

August 25, 2025

Genetic Diversity in Nile Tilapia: A Conservation Review

August 25, 2025

Flamingos Unlock the Secret to Longevity, New Study Finds

August 25, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    145 shares
    Share 58 Tweet 36
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Common Cold Could Offer Protection Against COVID-19, Finds National Jewish Health Study

Unraveling Ferroptosis in Esophageal Cancer Therapy

Impact of Iranian Medicinal Plants on Pancreatic Cancer

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.