• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Autism often associated with multiple new mutations

Bioengineer by Bioengineer
October 12, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Michael McCarthy/UW Medicine

Most cases of autism appear to be associated with the appearance of new mutations that are not inherited from the child's parents, researchers from the University of Washington School of Medicine report.

These new mutations occur in regions of the genome that contain genes, which code for proteins, as well as in "non-coding" regions, which do not contain genes but which regulate gene activity, the researchers found.

"We are excited by these early findings because they suggest that multiple new mutations in a child, both coding and non-coding, are important to understanding the genetics of the disease," said Evan Eichler, UW professor of genome sciences, who led the team that conducted the study.

The first author of the study, which was published online in the journal Cell, was Tychele Turner, a postdoctoral fellow in the Eichler Lab.

Although some forms of autism appear to run in families, most cases occur in families with no history of the disorder. This form of autism, called simplex autism, is thought to occur from new mutations that first appear when the the parents' sperm or eggs form.

These newly formed, or de novo, mutations are found in the affected child's genome, but not in either parent's genome. They are unlikely to occur in the affected child's siblings.

In the new study, researchers used a huge genomic database created by the Simons Foundation Autism Research Initiative. The scientists compared the genomes of 516 individuals who had simplex autism with the genomes of their parents and one sibling who was not affected by the disorder.

By comparing these family members, researchers hoped to identify new mutations that were more likely to appear in the affected child and more likely to be associated with an increased risk of developing autism.

Most previous studies had limited such comparisons to the small portion of the genome that includes the instructions for the synthesis of proteins. This coding region contains genes. The new study compared almost the entire genomes of the study participants, including the regions that do not include genes.

Although these "non-coding" regions do not include instructions for making proteins, they play an important role in regulating protein production by turning genes on and off and dialing their activity up or down.

The researchers observed that mutations that tended to appear in non-coding regions of the genomes occurred in areas known to influence gene activity in neurons located deep in the brain in a structure called the striatum.

This part of the brain is thought to play a role in some of autism behaviors. Typically, the striatum coordinates planning, reward perception, motivation and other cognitive functions.

Mutations were also located in areas of the genome that influence genes for embryonic stem cell development and fetal brain development.

The findings suggest that relatively few of the new mutations in genes linked to autism risk were needed to increase the odds of having the disorder. The risk rose with as few as two of these newly appearing mutations.

Eichler said that, to nail down the autism risk role played by mutations in the regulatory, non-coding regions of the genome, it will be necessary to repeat the study with many more sets of parents and their children.

###

The study's collaborators included researchers from the New York Genome Center, Lawrence Berkeley National Laboratory, University of California, Davis, Rockefeller University, and the U.S. Department of Energy Joint Genome Institute.

Eichler is a Howard Hughes Medical Institute investigator.

Media Contact

Leila Gray
[email protected]
206-685-0381
@hsnewsbeat

http://hsnewsbeat.uw.edu/

Related Journal Article

http://dx.doi.org/10.1016/j.cell.2017.08.047

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Impact of Sex Differences on Health: A Review

October 13, 2025
Social Factors Impact Systemic Hormone Therapy Use in Midlife Women

Social Factors Impact Systemic Hormone Therapy Use in Midlife Women

October 12, 2025

Immunomodulatory Effects of Lacticaseibacillus casei Exopolysaccharides

October 12, 2025

Brainstem Connectivity Differences by Sex and Menopause

October 12, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1229 shares
    Share 491 Tweet 307
  • New Study Reveals the Science Behind Exercise and Weight Loss

    103 shares
    Share 41 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    100 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    91 shares
    Share 36 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Glutamine: Targeted Metabolic Therapy in Tumors

IV vs. IO Vasopressin & Epinephrine in Neonatal CPR

Multiomics Unveil Precision Biomarkers for Obesity

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 64 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.