• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Australian wildfires triggered massive algal blooms in southern ocean

Bioengineer by Bioengineer
September 15, 2021
in Biology
Reading Time: 3 mins read
0
Australian Wildfires From Space
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

DURHAM, N.C. – Clouds of smoke and ash from wildfires that ravaged Australia in 2019 and 2020 triggered widespread algal blooms in the Southern Ocean thousands of miles downwind to the east, a new Duke University-led study by an international team of scientists finds.

Australian Wildfires From Space

Credit: Japan’s National Institute of Information and Communication Technology

DURHAM, N.C. – Clouds of smoke and ash from wildfires that ravaged Australia in 2019 and 2020 triggered widespread algal blooms in the Southern Ocean thousands of miles downwind to the east, a new Duke University-led study by an international team of scientists finds.

The peer-reviewed study, published September 15 in Nature, is the first to conclusively link a large-scale response in marine life to fertilization by pyrogenic – or fire-made — iron aerosols from a wildfire.

It shows that tiny aerosol particles of iron in the windborne smoke and ash fertilized the water as they fell into it, providing nutrients to fuel blooms at a scale unprecedented in that region.

The discovery raises intriguing new questions about the role wildfires may play in spurring the growth of microscopic marine algae known as phytoplankton, which absorb large quantities of climate-warming carbon dioxide from Earth’s atmosphere through photosynthesis and are the foundation of the oceanic food web.

“Our results provide strong evidence that pyrogenic iron from wildfires can fertilize the oceans, potentially leading to a significant increase in carbon uptake by phytoplankton,” said Nicolas Cassar, professor of biogeochemistry at Duke’s Nicholas School of the Environment.

The algal blooms triggered by the Australian wildfires were so intense and extensive that the subsequent increase in photosynthesis may have temporarily offset a substantial fraction of the fires’ CO2 emissions, he said. But it’s still unclear how much of the carbon absorbed by that event, or by algal blooms triggered by other wildfires, remains safely stored away in the ocean and how much is released back into the atmosphere. Determining that is the next challenge, Cassar said.

Large wildfires, like the record-breaking blazes that devastated parts of Australia between 2019 and 2020 and the fires now raging in the western U.S., Siberia, the Amazon, the Mediterranean and elsewhere, are projected to occur more and more frequently with climate change, noted Weiyi Tang, a postdoctoral fellow in geosciences at Princeton University, who co-led the study as a doctoral candidate in Cassar’s lab at Duke.  

“These fires represent an unexpected and previously under-documented impact of climate change on the marine environment, with potential feedbacks on our global climate,” Tang said.

Pyrogenic aerosols are produced when trees, brush and other forms of biomass are burned. Aerosol particles are light enough to be carried in a fire’s windborne smoke and ash for months, often over long distances.  

While the new study focused on wildfires’ impacts in the Southern Ocean, other regions, including the North Pacific and areas near the equator where deeper, colder waters rise to the surface, “should also be responsive to iron additions from wildfire aerosols,” said Joan Llort, a postdoctoral fellow in marine biogeochemistry at the Barcelona Supercomputing Center, who co-led the study as a research fellow at the University of Tasmania’s Institute of Marine and Antarctic Studies.

Cassar and Richard Matear of Australia’s national science agency, CSIRO, were corresponding authors of the study, which was conducted by researchers from the University of Tasmania, Duke, the Barcelona Supercomputing Center, the CSIRO Oceans and Atmosphere program, and the Plymouth Marine Laboratory.

The scientists used satellite observations, robotic ocean floats, atmospheric transport modelling and measurements of atmospheric chemistry to track the spread of pyrogenic iron aerosols from the Australian wildfires and measure their impacts on marine productivity.

###

Funding came from France’s “Laboratoire d’Excellence” LabexMER and Investissements d’Avenir programs; a Harry H. Hess Postdoctoral Fellowship; the Australian Research Council; the CSIRO Decadal Climate Forecasting Project; the AXA Research Fund; and the European Union’s Horizon 2020 program.

In addition to his faculty post at Duke, Cassar holds a research appointment at the Laboratoire des Sciences de l’Environnement Marin of the Institut Universitaire Européen de la Mer in Brest, France

CITATION: “Widespread Phytoplankton Blooms Triggered by 2019-20 Australian Wildfires,” Weiyi Tang, Joan Llort, Jakob Weis, Morgane M. G. Perron, Sara Basart, Zuchuan Li, Shubha Sathyendranath, Thomas Jackson, Estrella Sanz Rodriguez, Bernadette C. Proemse, Andrew R. Bowie, Christina Schallenberg, Peter G. Strutton, Richard Matear and Nicolas Cassar. Nature, Sept. 15, 2021. DOI: 10.1038/s41586-021-03805-8



Journal

Nature

DOI

10.1038/s41586-021-03805-8

Method of Research

Observational study

Article Title

Widespread Phytoplankton Blooms Triggered by 2019-20 Australian Wildfires

Article Publication Date

15-Sep-2021

Share13Tweet8Share2ShareShareShare2

Related Posts

miR-542 Overexpression Halts Cervical Cancer Growth

miR-542 Overexpression Halts Cervical Cancer Growth

October 13, 2025
blank

Global Gender Disparities in Alopecia Areata Risk

October 13, 2025

Innovative Lab-Grown Human Embryo Model Generates Blood Cells

October 13, 2025

Genetic Variants Impact Milk and Reproduction in Buffalo

October 13, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1233 shares
    Share 492 Tweet 308
  • New Study Reveals the Science Behind Exercise and Weight Loss

    104 shares
    Share 42 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    101 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    91 shares
    Share 36 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Impact of Storage Time and Temperature on FFPE Proteomics

Advancing Birth Equity Through Collaborative Systems Mapping

Advancements and Future of OMICS in Plant-Pathogen Research

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 64 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.