• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

ATP from sensory neuron-interneuron crosstalk is key to spreading inflammation in Rheumatoid Arthritis

Bioengineer by Bioengineer
May 17, 2022
in Biology
Reading Time: 3 mins read
0
Remote inflammation pathway
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Adenosine triphosphate (ATP) secreted from sensory neuron-interneuron crosstalk is key to the spreading of inflammation across joints, acting as a neurotransmitter and inflammation enhancer.

Remote inflammation pathway

Credit: Rie Hasebe, et al. Journal of Experimental Medicine. May 17, 2022.

Adenosine triphosphate (ATP) secreted from sensory neuron-interneuron crosstalk is key to the spreading of inflammation across joints, acting as a neurotransmitter and inflammation enhancer.

Rheumatoid arthritis is a chronic inflammatory autoimmune disorder that primarily affects joints. One of the key features of this disease is remote inflammation, where inflammation spreads from one joint to another. Research has shown that neural circuits or cells migrated from the joints are involved in inflammation spread, but the detailed mechanism by which this occurs has not been elucidated.

A team of researchers from Japan and the USA, led by Professor Masaaki Murakami at Hokkaido University,  have revealed that remote inflammation spreads by neuron crosstalk, and that adenosine triphosphate (ATP) plays a key role in this process. Their findings, published in the Journal of Experimental Medicine, may lead to new therapies and treatments for inflammatory diseases.

Inflammation is a part of the natural immune response that occurs in response to infection or irritation. It is a process by which the immune system, involving immune cells, blood vessels, and molecular mediators, attempts to clear out the pathogens and damaged cells and thereafter repair the damage. However, excessive inflammation is a disorder in itself, and is seen in diseases such as hay fever, atherosclerosis, psoriasis, and rheumatoid arthritis, among others.

In this study, the authors used previous observations of the gateway reflex—an immune response mechanism whereby specific neural signals change the state of specific blood vessels to allow immune cells to enter tissue, leading to local inflammation—to hypothesize that neural crosstalk could be responsible for remote inflammation.

They tested this hypothesis through experiments in rheumatoid arthritis models in mice. The mice were divided into control and test groups. In the test groups, the sensory neural circuits between the left and right ankle joints were interrupted. Arthritis of the left ankle was then induced in both sets of mice and the spread of arthritis to the right ankle was observed.

Their results showed that the inflammation signal in one joint is transmitted to the other via a sensory neuron connection through the spinal cord, leading to inflammation in both joints. Specifically, inflammation in one joint led to an increase of ATP in both joints, which triggered an increase of a signal molecule that resulted in inflammation. Blocking this pathway prevented the spread of inflammation.

As this study was performed in mice models, it is necessary to determine if the findings apply to rheumatoid arthritis and other chronic inflammatory diseases in humans. If so, it could provide a therapeutic target for various diseases with spreading inflammation.

###

Joint release by Hokkaido University, National Institute for Physiological Sciences (NIPS), National Institutes for Quantum Science and Technology (QST), and Japan Agency for Medical Research and Development (AMED).

The researchers involved in this study include Rie Hasebe, Kaoru Murakami, Nada Halaka, Junko Nio-Kobayashi, Toshihiko Iwanaga, Masahiko Watanabe, Daisuke Kamimura, Yuki Tanaka, Masaaki Murakami at Hokkaido University. Rie Hasebe is also affiliated with the National Institute for Physiological Sciences (NIPS) and the Moonshot Research and Development Project, Japan Agency for Medical Research and Development (AMED); Yuki Tanaka is also affiliated with the National Institutes for Quantum Science and Technology (QST) and the Moonshot Research and Development Project, Japan Agency for Medical Research and Development (AMED); and Masaaki Murakami is also affiliated with affiliated with the National Institute for Physiological Sciences (NIPS), the National Institutes for Quantum Science and Technology (QST), and the Moonshot Research and Development Project, Japan Agency for Medical Research and Development (AMED).



Journal

Journal of Experimental Medicine

DOI

10.1084/jem.20212019

Method of Research

Experimental study

Subject of Research

Animals

Article Title

ATP spreads inflammation to other limbs through crosstalk between sensory neurons and interneurons

Article Publication Date

17-May-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

AAAS Expands Science Partner Journal Program with Launch of Cancer Communications

AAAS Expands Science Partner Journal Program with Launch of Cancer Communications

October 28, 2025
blank

Z-GENIE: Easy Tool for Predicting Z-DNA Regions

October 28, 2025

Exploring Taar Expression in Mandarin Fish Response

October 28, 2025

Uncovering Hidden Carbon Dioxide Absorption: Russian Scientists Reveal Plant Roots’ Secret Role

October 27, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1287 shares
    Share 514 Tweet 321
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    310 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    198 shares
    Share 79 Tweet 50
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    135 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Enhancing Nurses’ Seizure Management Through Flipped Learning

Amlodipine Targets Glioma Stem Cells by Degrading EGFR

Smart Hydrogel Boosts Diabetic Foot Regeneration Mechanisms

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.