• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Atomic fingerprint identifies emission sources of uranium

Bioengineer by Bioengineer
March 9, 2020
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: © M. Martschini, University of Vienna


Uranium is not always the same: depending on whether this chemical element is released by the civil nuclear industry or as fallout from nuclear weapon tests, the ratio of the two anthropogenic, i.e. man-made, uranium isotopes 233U and 236U varies. These results were lately found by an international team grouped around physicists from the University of Vienna and provides a promising new “fingerprint” for the identification of radioactive emission sources. As a consequence, it is also an excellent environmental tracer for ocean currents, as it is shown in Nature Communications.

The oceans naturally contain concentrations of the element uranium (U) in the range of several micrograms per kilogram of water. Due to its dissolved chemical form, uranium is not removed from water by sedimentation, but is transported and mixed together with the corresponding water masses. These chemical properties allow to trace water transport processes in ocean currents, which have a strong influence on our climate.

Uranium as an oceanographic indicator

This also applies to so-called anthropogenic uranium isotopes released by human activities, such as nuclear reprocessing plants, reactor accidents or atmospheric nuclear weapon tests. An advantage of using anthropogenic uranium isotopes for tracking ocean currents is their high sensitivity to small, recent uranium inputs into the large reservoir of natural uranium. By observing the dispersion of trace nuclides from the source of their emission, scientists can deduce the water transport in the neighbouring seas.

The Isotope Physics group at the University of Vienna initiated the analysis of the anthropogenic trace isotope 236U several years ago, which has now increasingly been accepted as an oceanographic tracer by the respective scientific community. However, in systems affected by multiple sources of contamination, such as the Arctic Ocean, a single isotope is not sufficient for tracing ocean currents because too little is known about the emission history of the various sources.

233U/236U – the new isotopic fingerprint

“So we were looking for a second anthropogenic uranium isotope, which is produced during the explosion of nuclear weapons but hardly in conventional nuclear power plants. In terms of nuclear physics, 233U appeared to be a promising candidate,” explains Peter Steier, one of the initiators of the study.

The scientists succeeded in analysing smallest quantities of 233U and 236U using accelerator mass spectrometry (AMS) at the Vienna Environmental Research Accelerator (VERA). The samples provided by international cooperation partners included a coral core from the Pacific Ocean, a peat bog core from the Black Forest and samples from the Irish and the Baltic Sea. The detection of the extremely low concentrations of 233U, for instance 1 femtogram per gram of coral, was only possible after a major upgrade of the VERA facility.

The hypothesis of the physicists was confirmed, as they found a 233U/236U ratio in samples from the Irish Sea, which is known to be heavily affected by discharges from the Sellafield reprocessing plant, ten times lower than in the samples from the German peat bog where the global fallout of weapons tests had accumulated. The data from the coral and the peat bog core can even be attributed to different phases of the atmospheric nuclear weapons testing programs.

New insights into nuclear weapons fallout

The authors argue that significant amounts of 233U were released either by thermonuclear weapons, in which the isotope is produced by rapid neutron capture in highly enriched uranium, or by the explosion of low efficiency weapons in which 233U was used directly as fuel. “Our experimental data show that the contributions to global weapon fallout as of today’s knowledge cannot explain the 233U uranium balance in the bog. This suggests a contribution from the only known 233U bomb tested at the Nevada test site,” says first author Karin Hain of the University of Vienna.

###

Publication in Nature Communications:

“233U/236U signature allows to distinguish environmental emissions of civil nuclear industry from weapons fallout”, Karin Hain et al, 2020 (open access)

DOI: 10.1038/s41467-020-15008-2

Media Contact
Karin Hain
[email protected]
43-142-775-1711

Original Source

https://medienportal.univie.ac.at/presse/aktuelle-pressemeldungen/detailansicht/artikel/atomic-fingerprint-identifies-emission-sources-of-uranium/

Related Journal Article

http://dx.doi.org/10.1038/s41467-020-15008-2

Tags: Atomic PhysicsAtomic/Molecular/Particle PhysicsChemical/Biological WeaponsChemistry/Physics/Materials Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Extraction Methods Impact Idesia Polycarpa Oil Quality

September 13, 2025

Evaluating Rohu Fry Transport: Key Water Quality Insights

September 13, 2025

Unveiling Arabidopsis Aminotransferases’ Multi-Substrate Specificity

September 13, 2025

Evaluating Energy Digestibility in Quail Feed Ingredients

September 12, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    153 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    65 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Impact of Electrode Material on Radish Germination

Maize Fungal Diseases: Pathogen Diversity in Ethiopia

Unraveling Gut Microbiota’s Role in Breast Cancer

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.