• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Atomic blueprint of ‘molecular machine’ reveals role in membrane protein installation

Bioengineer by Bioengineer
June 3, 2020
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Courtesy of Dr. Huilin Li, Van Andel Institute

GRAND RAPIDS, Mich. (June 3, 2020) — Van Andel Institute scientists have revealed the first known atomic structure of a “molecular machine” responsible for installing critical signaling proteins into cellular membranes.

The findings, published today in Nature, shed new light on how this process works, and lay the foundation for potential future therapies for diseases like cancer, Alzheimer’s and cystic fibrosis.

“Determining precisely how proteins are assembled and function is central to understanding how the body works on the most basic level,” said VAI Professor Huilin Li, Ph.D., leader of the Institute’s Structural Biology Program and the study’s senior author. “Our findings provide a map for future studies that one day could be translated into ways to combat disease.”

Proteins are the molecular workhorses of the body, responsible for carrying out nearly every biological function. Roughly one-third of proteins are membrane proteins, whose jobs include relaying information to and from cells, and transporting ions and molecules through the cell membrane, among other vital tasks. These important roles make them popular marks for therapy — more than half of the medications on the market target membrane proteins as a way to treat disease.

The endoplasmic reticulum membrane complex, or EMC, is embedded in the endoplasmic reticulum, a system of membranes within cells that plays a part in the creation, editing and transport of proteins. When the EMC’s machinery breaks down, protein production can go awry, resulting in misshapen proteins that cannot do their jobs properly. For example, problems with the EMC are directly associated with cystic fibrosis, a genetic lung disease caused by improper assembly of a protein called CFTRDF508.

Using the Institute’s powerful cryo-electron microscopes (cryo-EM), Li and his colleagues visualized the EMC of a common yeast strain. Yeast are commonly used models in biology because they have many of the same molecular systems as humans but are much simpler to study.

They found that the yeast EMC is larger than previously thought, containing eight protein subunits instead of six. Additionally, the core of the EMC resembles a protein that performs a similar function as the EMC in bacteria, suggesting that the EMC in eukaryotic organisms like mammals may have arisen from bacterial systems.

Collectively, the findings shed light on how membrane proteins become established in membranes and how they change from their unstructured form to their functional form once there — processes that have not been well understood until now.

###

Today’s study was made possible by VAI’s state-of-the-art David Van Andel Advanced Cryo-Electron Microscopy Suite, which allows scientists to view some of life’s smallest components in exquisite detail. VAI’s most powerful microscope, the Titan Krios, can visualize molecules 1/10,000th the width of a human hair.

Authors include Lin Bai, Ph.D., Qinglong You, Ph.D., Xiang Feng, Ph.D., and Amanda Kovach of VAI.

Research reported in this publication was supported by Van Andel Institute and the National Cancer Institute of the National Institutes of Health under award no. CA231466 (Li). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

ABOUT VAN ANDEL INSTITUTE

Van Andel Institute (VAI) is committed to improving the health and enhancing the lives of current and future generations through cutting edge biomedical research and innovative educational offerings. Established in Grand Rapids, Michigan, in 1996 by the Van Andel family, VAI is now home to more than 400 scientists, educators and support staff, who work with a growing number of national and international collaborators to foster discovery. The Institute’s scientists study the origins of cancer, Parkinson’s and other diseases and translate their findings into breakthrough prevention and treatment strategies. Our educators develop inquiry-based approaches for K-12 education to help students and teachers prepare the next generation of problem-solvers, while our Graduate School offers a rigorous, research-intensive Ph.D. program in molecular and cellular biology. Learn more at vai.org.

Media Contact
Beth Hinshaw Hall
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41586-020-2389-3

Tags: BiologyCell BiologyGenes
Share12Tweet8Share2ShareShareShare2

Related Posts

Allen Institute Unveils 2025 Next Generation Science Leaders

Allen Institute Unveils 2025 Next Generation Science Leaders

November 4, 2025
MBD Gene Family in Broomcorn Millet: Stress Response Analysis

MBD Gene Family in Broomcorn Millet: Stress Response Analysis

November 4, 2025

Cutting-Edge Molecular Dynamics Simulations Achieve Remarkable Precision in RNA Folding Studies

November 4, 2025

Unveiling Herpesvirus Helicase–Primase and Drug Targets

November 4, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1297 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Enhancing V4+ Stability in Zinc-Ion Batteries

Dr. Harolyn Belcher Honored with 2026 David G. Nichols Health Equity Award by American Pediatric Society

FAU Engineering Secures $1.5M Funding to Establish the Ubicquia Innovation Center for Intelligent Infrastructure

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.