• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Astronomers observe intra-group light – the elusive glow between distant galaxies

Bioengineer by Bioengineer
November 24, 2022
in Chemistry
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

An international team of astronomers have turned a new technique onto a group of galaxies and the faint light between them – known as ‘intra-group light’ – to characterise the stars that dwell there. 

IGL between galaxies 400138

Credit: Martínez-Lombilla et al./UNSW Sydney

An international team of astronomers have turned a new technique onto a group of galaxies and the faint light between them – known as ‘intra-group light’ – to characterise the stars that dwell there. 

Lead author of the study published in MNRAS, Dr Cristina Martínez-Lombilla from the School of Physics at UNSW Science, said “We know almost nothing about intra-group light. 

“The brightest parts of the intra-group light are ~50 times fainter than the darkest night sky on Earth. It is extremely hard to detect, even with the largest telescopes on Earth – or in space.” 

Using their sensitive technique, which eliminates light from all objects except that from the intra-group light, the researchers not only detected the intra-group light but were able to study and tell the story of the stars that populate it. 

“We analysed the properties of the intra-group stars – those stray stars between the galaxy groups. We looked at the age and abundance of the elements that composed them and then we compared those features with the stars still belonging to galaxy groups,” Dr Martínez-Lombilla said. 

“We found that the intra-group light is younger and less metal-rich than the surrounding galaxies.” 

Rebuilding the story of intra-group light 

Not only were the orphan stars in the intra-group light ‘anachronistic’ but they appeared to be of a different origin to their closest neighbours. The researchers found the character of the intra-group stars appeared similar to the nebulous ‘tail’ of a further away galaxy. 

The combination of these clues allowed the researchers to rebuild the history – the story – of the intra-group light and how its stars came to be gathered in their own stellar orphanage. 

“We think these individual stars were at some points stripped from their home galaxies and now they float freely, following the gravity of the group,” said Dr Martínez-Lombilla. “The stripping, called tidal stripping, is caused by the passage of massive satellite galaxies – similar to the Milky Way – that pull stars in their wake.” 

This is the first time the intra-group light of these galaxies has been observed. 

“Unveiling the quantity and origin of the intra-group light provides a fossil record of all the interactions a group of galaxies has undergone and provides a holistic view of the system’s interaction history,” Dr Martínez-Lombilla said. 

“Also, these events occurred a long time ago. The galaxies [we’re looking at] are so far away, that we’re observing them as they were 2.5 billion years ago. That is how long it takes for their light to reach us.” 

By observing events from a long time ago, in galaxies so far away, the researchers are contributing vital datapoints to the slow-burning evolution of cosmic events. 

Tailored image treatment procedure 

The researchers pioneered a unique technique to achieve this penetrating view. 

“We have developed a tailored image treatment procedure that allows us to analyse the faintest structures in the Universe,” said Dr Martínez-Lombilla. 

“It follows the standard steps for the study of faint structures in astronomical images – which implies 2D modelling and the removal of all light except that coming from the intra-group light. This includes all the bright stars in the images, the galaxies obscuring the intra-group light and a subtraction of the continuum emission from the sky. 

“What makes our technique different is that it is fully Python-based so it is very modular and easily applicable to different sets of data from different telescopes rather than being just useful for these images. 

“The most important outcome is that when studying very faint structures around galaxies, every step in the process counts and every undesirable light should be accounted for and removed. Otherwise, your measurements will be wrong. 

The techniques presented in this study are a pilot, encouraging future analyses of intra-group light, Dr Martínez-Lombilla said. 

“Our main long-term goal is to extend these results to a large sample of group of galaxies. Then we can look at statistics and find out the typical properties regarding the formation and evolution of the intra-group light and these extremely common systems of groups of galaxies. 

“This is key work for preparing the next generation of deep all-sky surveys such as those to be performed with the Euclid space telescope and the LSST with the Vera C. Rubin Observatory.” 

 

 

—ENDS—

Media Contact:

Jesse Hawley

UNSW Science | News and Content Coordinator

[email protected]

0422 537 392

Dr Cristina Martínez Lombilla, Postdoctoral Research Associate School of Physics, UNSW Sydney. Contact: Jesse Hawley



Journal

Monthly Notices of the Royal Astronomical Society

DOI

10.1093/mnras/stac3119

Method of Research

Imaging analysis

Subject of Research

Not applicable

Article Title

Galaxy and Mass Assembly (GAMA): Extended intra-group light in a group at = 0.2 from deep hyper-suprime cam images

Article Publication Date

24-Nov-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Creating Something from Nothing: Physicists Simulate Vacuum Tunneling in a Two-Dimensional Superfluid

Creating Something from Nothing: Physicists Simulate Vacuum Tunneling in a Two-Dimensional Superfluid

September 1, 2025

Chain Recognition Advances Head–Tail Carboboration of Alkenes

September 1, 2025

Solar Orbiter Tracks Ultrafast Electrons Back to the Sun

September 1, 2025

Innovative Pimple Patches Offer Effective Solution for Stubborn Acne

August 29, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    153 shares
    Share 61 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    143 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Do people and monkeys see colors the same way?

    112 shares
    Share 45 Tweet 28

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Tailored Risk Messages Show No Impact on Increasing Colorectal Cancer Screening Rates

New Predictive Model for Postpartum Hemorrhage in Cesarean Cases

Novel ADC Targets Fucosyl-GM1 in Lung Cancer

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.