• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Astrocyte networks in the mouse brain control spatial learning and memory

Bioengineer by Bioengineer
March 8, 2022
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

In the brain, neurons and astrocytes work together to process information and enable complex behavior and cognitive abilities. Astrocytes have many functions like controlling the blood-brain barrier, providing nutrients to the nervous tissue, and supporting its repair. An interesting feature of astrocytes is that they form large networks of connected cells. These couplings are made of specific membrane pores that are formed by a group of proteins called connexins. And through these connections, astrocytes can communicate with each other by exchanging various ions and small molecules.

Astrocyte network

Credit: Ladina Hösli, University of Zurich

In the brain, neurons and astrocytes work together to process information and enable complex behavior and cognitive abilities. Astrocytes have many functions like controlling the blood-brain barrier, providing nutrients to the nervous tissue, and supporting its repair. An interesting feature of astrocytes is that they form large networks of connected cells. These couplings are made of specific membrane pores that are formed by a group of proteins called connexins. And through these connections, astrocytes can communicate with each other by exchanging various ions and small molecules.

Switching off astrocyte coupling disrupts spatial memory formation

A team of neuroscientists led by Aiman Saab and Bruno Weber at the Institute of Pharmacology and Toxicology of the University of Zurich (UZH), has revealed that in the adult brain of mice astrocyte coupling contributes to neural functioning in the hippocampus, a brain region that is involved in spatial memory formation. “We found that in adulthood an intact astrocyte network is essential for neural homeostasis, synaptic plasticity and spatial cognitive abilities of this brain region,” says Aiman Saab, last author of the study.

To elucidate the functional relevance of the astrocyte network, the researchers generated a mouse model in which the two key connexins responsible for linking astrocytes together can be selectively inactivated. Once the corresponding genes were turned off, the astrocytes lost their ability to maintain intercellular networks and astrocyte-to-astrocyte coupling was disrupted within a few weeks.

Intact astrocytic network is key for brain functioning of adult mice

Disruption of the astrocyte network altered the excitability of the neurons in the hippocampus and their signal transmission at the synapses. Moreover, the strengthening of these specialized neuronal connections needed to store synaptic information was also compromised. This was accompanied by significant deficits in spatial learning and memory of the animals. “Astrocyte functions are known to be involved in shaping cognitive abilities. Our study now shows that an intact astrocyte network is critical for spatial memory formation in adult mice,” says Ladina Hösli, first author of the study.

Striking similarities to neurodegenerative diseases and neuropsychiatric disorders

Furthermore, the primary immune cells of the brain are also affected by the loss of astrocyte coupling. The activation of these so-called microglia observed in the mice are similar to changes documented in neurodegenerative diseases such as Alzheimer’s disease and neuropsychiatric disorders like depressions. “Astrocytes and microglia not only changed their morphology, we also found alterations in specific markers that are characteristic to disease-associated microglia,” says Hösli.

Since normal brain aging is also associated with changes in astrocytic coupling, these glial changes might contribute to the age-related decline in learning and memory. “Our study shows that in the adult brain the functioning of astrocytic connexins and an intact glial network may be important for the way astrocytes and microglia work together to maintain neural homeostasis,” says Aiman Saab. In a next step, the researchers aim to understand how microglial functions are altered when astrocyte coupling is perturbed.



Journal

Cell Reports

DOI

10.1016/j.celrep.2022.110484

Method of Research

Experimental study

Subject of Research

Animals

Article Title

Decoupling astrocytes in adult mice impairs synaptic plasticity and spatial learning

Article Publication Date

7-Mar-2022

COI Statement

none

Share12Tweet8Share2ShareShareShare2

Related Posts

Unraveling Odorant Proteins in Kissing Bugs

September 1, 2025

Drumming in Mongolian Gerbils: Context or Arousal?

September 1, 2025

Seasonal Brain Shrinkage in Shrews Caused by Water Loss, Not Cell Death

September 1, 2025

Lower IGF1 Levels in Preeclampsia Affect Trophoblasts

September 1, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    153 shares
    Share 61 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    143 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Do people and monkeys see colors the same way?

    112 shares
    Share 45 Tweet 28

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Tailored Risk Messages Show No Impact on Increasing Colorectal Cancer Screening Rates

New Predictive Model for Postpartum Hemorrhage in Cesarean Cases

Novel ADC Targets Fucosyl-GM1 in Lung Cancer

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.