• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 7, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

As cities grow, how will city trash, wastewater, and emissions rise?

Bioengineer by Bioengineer
January 30, 2024
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

More than half of the world’s population—4.4 billion people—lives in cities, and that proportion will grow to two-thirds by the year 2050, according to the United Nations.

“City-Earth-Spiral”

Credit: Image by by Elisa Heinrich Mora, with inputs from Katie Mast, Abha Eli, and Mingzhen Lu.

More than half of the world’s population—4.4 billion people—lives in cities, and that proportion will grow to two-thirds by the year 2050, according to the United Nations.

As the world’s population expands, and becomes increasingly urbanized, many have raised concerns about the impact of waste—from house trash to wastewater to greenhouse gas emissions—on the planet.

“We as a society tend to ignore the unpleasant side of our production,” says Mingzhen Lu, an assistant professor at New York University’s Department of Environmental Studies.

However, while both waste and urbanization increase each year, less certain is the magnitude of waste generated by cities and the nature of its growth.

To address these matters, Lu and Chris Kempes, a professor at the Sante Fe Institute, and their colleagues examined waste production in urban systems. Specifically, the authors used scaling theory to analyze waste products—municipal solid waste, wastewater, and greenhouse gas emissions—from more than 1,000 cities around the world. Scaling theory, which describes how changes in the size of systems impact a range of system properties, has been used to elucidate phenomena in urban systems—such as the accelerating wealth creation as cities get bigger—so is a suitable means for understanding how waste production scales with the growth of a city.

“The key question is whether waste is produced more or less efficiently as systems scale up, and how big a recycling burden there is as a consequence,” says Kempes.

Their findings, which appear in the journal Nature Cities, showed distinct differences in waste production as cities grow.

Specifically, their analysis revealed that solid waste scales linearly; because it is tied to individual consumption, it increases at the same rate as population growth. By contrast, wastewater production scales superlinearly—at a faster than linear rate—while emissions scale sub-linearly, or at a slower than linear rate. So, when cities double in size, the generation of their greenhouse gas emissions increase at less than double the rate of their population growth,  suggesting bigger cities, on average, are more energy efficient but less water efficient.

Their analysis also showed that cities with a higher per-capita GDP generate more waste, which underscores the strong bond between waste generation and economic growth.

The researchers conclude that, overall, more waste generation seems to be a natural consequence of economic growth. To address this, the authors argue for a “break up” of economic growth and waste generation, an unavoidable path to urban sustainability but one already adopted by some cities.

For instance, two decades ago, San Francisco implemented a long-term goal of zero waste and has sought to achieve it through increased recycling and composting—sustainable methods of waste that would otherwise go to landfills. Seoul has adopted a similar approach and now recycles nearly all of its food waste.

Moving forward, Lu expressed his inspiration to contribute to this endeavor of urban sustainability by learning from nature.

“Examining how cities generate waste is only the first step,” he says. “We eventually need to figure out a way to close the material loop. Natural ecosystems and the organisms within, being the early multicellular life or the ancient wood-decaying fungi, have figured out how to deal with nature’s waste for millions of years. We can too.”

# # #



Journal

Nature Cities

DOI

10.1038/s44284-023-00021-5

Method of Research

Data/statistical analysis

Article Title

Worldwide scaling of waste generation in urban systems

Article Publication Date

17-Jan-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

Neoadjuvant Chemoradiation Effects in Older Irish Esophageal Patients

Neoadjuvant Chemoradiation Effects in Older Irish Esophageal Patients

August 7, 2025
Optical Control of Resonances in Asymmetric Metasurfaces

Optical Control of Resonances in Asymmetric Metasurfaces

August 7, 2025

Optimizing Hydrogel Cultivation for Chlorella vulgaris Growth

August 7, 2025

Solving Medicine Theft: How Chemical Detective Work Uncovers Stolen and Repackaged Drugs

August 7, 2025

POPULAR NEWS

  • blank

    Neuropsychiatric Risks Linked to COVID-19 Revealed

    76 shares
    Share 30 Tweet 19
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    46 shares
    Share 18 Tweet 12
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Neoadjuvant Chemoradiation Effects in Older Irish Esophageal Patients

Optical Control of Resonances in Asymmetric Metasurfaces

Optimizing Hydrogel Cultivation for Chlorella vulgaris Growth

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.