• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, August 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Artificial light is a deadly siren song for young fish

by
July 3, 2024
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New research finds that artificial light at night (ALAN) attracts larval fish away from naturally lit habitats, while dramatically lowering their chances of survival in an “ecological trap”, with serious consequences for fish conservation and fishing stock management.

Light pollution at night over aquatic habitats in French Polynesia

Credit: Jules Schligler

New research finds that artificial light at night (ALAN) attracts larval fish away from naturally lit habitats, while dramatically lowering their chances of survival in an “ecological trap”, with serious consequences for fish conservation and fishing stock management.

“Light pollution is a huge ongoing subject with many aspects that are still not well understood by scientists,” says Mr Jules Schligler, a PhD student at CRIOBE Laboratory (Centre de Recherches Insulaires et Observatoire de l’Environnement) in Moorea, French Polynesia.

ALAN is the product of human-related activities such as the use of electrical lights along roads, factories, residences and resorts near bodies of water. “ALAN is everywhere and marine wildlife is not exempt to its effects,” says Mr Schligler. “A quarter of the world coastline is impacted and this level is increasing every year.”

Mr Schligler and his team set out to investigate the effects of ALAN on larval recruitment in tropical fish. Larval recruitment is the number of fish that settle in their habitat and survive their juvenile years before becoming an adult. “Larval recruitment is a key life history trait for fish that impacts on stock replenishment and adult fitness,” he says. “Larval fish are also very dependent on the natural light cycle.”

To investigate these effects, Mr Schligler used 48 corals that were split into two treatments: control corals with only natural light exposure, and ALAN corals that were exposed to light pollution at night of a similar intensity that beach resorts and streetlights produce. They focused on two dominant coral reef damselfish native to French Polynesia, the yellowtail dascyllus (Dascyllus flavicaudus) and the blue-green chromis (Chromis viridis).

“First, we monitored fish settlement to the corals to see if they preferred natural or artificial light conditions,” says Mr Schligler. “The fish were then subjected to a range of experiments to better understand the impact of ALAN after they had settled.” These experiments measured various aspects of development and survival such as growth, metabolic rate and risk of predation.

This research finds that many young fish actually prefer environments with artificial light, recruiting 2-3 times as many fish than naturally lit environments.

The study also reveals the harmful effects of ALAN on fish growth, metabolic rate and overall survival. “ALAN has produced an ecological trap where these fish, misled by human activity, now prefer habitats where their fitness will be lower,” says Mr Schligler. “In other words, ALAN has the potential to attract organisms to a less suitable environment, generating a peculiar anthropogenic stressor.”

These results have implications for fish conservation and harvesting policies. “Marine protected areas have only started to consider light pollution in their management policy very recently,” says Mr Schligler. “To better understand fish stock replenishment and conservation, it is crucial to take into account as many factors as we can, such as the rarely considered effects of light pollution.”

This research is being presented at the Society for Experimental Biology Annual Conference in Prague on the 2-5th July 2024.



Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Long Non-Coding RNAs Fuel Liver Cancer Progression

August 11, 2025
blank

SLAMseq Uncovers RNA Transfer Between Mouse Organs

August 11, 2025

Assessing Gaming Disorder Tests in Hong Kong Students

August 11, 2025

Nanofiltration and Microbial Fuel Cells for Water Purification

August 11, 2025

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    139 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    78 shares
    Share 31 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    57 shares
    Share 23 Tweet 14
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Long Non-Coding RNAs Fuel Liver Cancer Progression

SLAMseq Uncovers RNA Transfer Between Mouse Organs

Assessing Gaming Disorder Tests in Hong Kong Students

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.