• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Artificial intelligence tools quickly detect signs of injection drug use in patients’ health records

Bioengineer by Bioengineer
September 22, 2022
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

FINDINGS

Heroin needle in the street

Credit: Wikimedia Commons

FINDINGS

An automated process that combines natural language processing and machine learning identified people who inject drugs (PWID) in electronic health records more quickly and accurately than current methods that rely on manual record reviews.

BACKGROUND

Currently, people who inject drugs are identified through International Classification of Diseases (ICD) codes that are specified in patients’ electronic health records by the healthcare providers or extracted from those notes by trained human coders who review them for billing purposes. But there is no specific ICD code for injection drug use, so providers and coders must rely on a combination of non-specific codes as proxies to identify PWIDs – a slow approach that can lead to inaccuracies.

METHOD

The researchers manually reviewed 1,000 records from 2003-2014 of people admitted to Veterans Administration hospitals with Staphylococcus aureus bacteremia, a common infection that develops when the bacteria enters openings in the skin, such as those at injection sites. They then developed and trained algorithms using natural language processing and machine learning and compared them with 11 proxy combinations of ICD codes to identify PWIDs.

Limitations to the study include potentially poor documentation by providers. Also, the dataset used is from 2003 to 2014, but the injection drug use epidemic has since shifted from prescription opioids and heroin to synthetic opioids like fentanyl, which the algorithm may miss because the dataset where it learned the classification does not have many examples of that drug. Finally, the findings may not be applicable to other circumstances given that they are based entirely on data from the Veterans Administration.

IMPACT

Use of this artificial intelligence model significantly speeds up the process of identifying PWIDs, which could improve clinical decision making, health services research, and administrative surveillance.

COMMENT

“By using natural language processing and machine learning, we could identify people who inject drugs in thousands of notes in a matter of minutes compared to several weeks that it would take a manual reviewer to do this,” said lead author Dr. David Goodman-Meza, assistant professor of medicine in the division of infectious diseases at the David Geffen School of Medicine at UCLA. “This would allow health systems to identify PWIDs to better allocate resources like syringe services programs and substance use and mental health treatment for people who use drugs.”

AUTHORS

The study’s other researchers are Dr. Amber Tang, Dr. Matthew Bidwell Goetz, Steven Shoptaw, and Alex Bui of UCLA; Dr. Michihiko Goto of University of Iowa and Iowa City VA Medical Center; Dr. Babak Aryanfar of VA Greater Los Angeles Healthcare System; Sergio Vazquez of Dartmouth College; and Dr. Adam Gordon of University of Utah and VA Salt Lake City Health Care System. Goodman-Meza and Goetz also have appointments with VA Greater Los Angeles Healthcare System.

JOURNAL

The study is published in the peer-reviewed journal Open Forum Infectious Diseases.



Journal

Open Forum Infectious Diseases

DOI

10.1093/ofid/ofac471

Method of Research

Data/statistical analysis

Subject of Research

People

Article Title

Natural language processing and machine learning to identify people who inject drugs in electronic health records

Article Publication Date

12-Sep-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Innovative Algorithm Paves the Way for Enhanced Noise Reduction in Quantum Devices

August 28, 2025
How a Superfluid Transforms into a Solid at the Same Time

How a Superfluid Transforms into a Solid at the Same Time

August 28, 2025

Physicists Detect Elusive Hall Effect Phenomenon for the First Time

August 28, 2025

Engineered Light-Controlled Proteins Enable Reversible Assemblies

August 28, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    150 shares
    Share 60 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Comparing Treatment Intensification Timing in Type 2 Diabetes

Immune Cell Therapy Shows Promise in Stabilizing Advanced Head and Neck Cancer

Innovative Techniques Broaden Access to Vital Human Health Molecules

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.