• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Artificial intelligence (AI) designs metamaterials used in the invisibility cloak

Bioengineer by Bioengineer
July 15, 2019
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The research team led by professor Rho of POSTECH developed a simultaneous inverse design of metamaterials via deep learning

IMAGE

Credit: POSTECH

Metamaterials are artificial materials engineered to have properties not found in naturally occurring materials and they are best known as materials for the ‘invisibility cloak’ often featured in SF novels or games. By precisely designing artificial atoms that are smaller than the wavelength of light and controlling the polarization and spin of light, new optical properties are made that are not found in nature. However, the current process require numerous trial and failures until the right material is obtained. It is not only time consuming but also compromise efficiency. And AI is expected to provide a solution for this problem.

The research group of Prof. Junsuk Rho, Sunae So and Jungho Mun of Department of Mechanical Engineering and Department of Chemical Engineering at POSTECH developed a design with a higher degree of freedom which allows to choose materials and to design photonic structures arbitrarily by using Deep Learning. Their findings are published in several renowned journals such as the Applied Materials and Interfaces, Nanophotonics, Microsystems & Nanoengineering, Optics Express, and Scientific Reports. As they published their findings in five journals a month, they have attracted tremendous attention from the field of academics.

Properties of metamaterials depend on the way they are designed. The conventional intuitive-based and labor-intensive design has been suggested as a problem due to repetitive trial and error process. However, Prof. Rho and his team suggested a new data-based design method by utilizing AI.

AI can be trained with a vast amount of data and it can learn designs of various metamaterials and the correlation between photonic structures and their optical properties. Using this training process, it can provide a design method that makes a photonic structure with desired optical properties. Once trained, it can provide a desired design promptly and efficiently. This has already been researched at various institutions in the U.S.A such as MIT, Stanford University, Georgia Institute of Technology. However, the previous studies require inputs of materials and structural parameters of structures beforehand and adjust photonic structures afterwards.

Prof. Rho and his group educated AI to design arbitrary photonic structures and gave additional level of freedom of the design by categorizing types of materials and adding them as a design factor, which made it possible to design appropriate materials for relevant optical properties. Analysis of metameterials obtained through this design method revealed that it had identical optical properties inputted in the artificial neural network.

The research team, who have published various research findings on the design of metamaterials and optics theory, put enormous efforts in this research by studying the programming language, Python, needed to learn Deep Learning with online courses, MOOC.

Their accomplishment of developing this design method is revolutionary in many ways. First of all, it significantly reduced the time needed to design photonic structures. Also, it allows various designs of new metamaterials because scientists are no longer limited to conduct empirical designs to obtain results. Metamaterials can be utilized in applications such as display, security, and military technology but all within the limits of development stage at the moment. In this regard, introduction of AI to the design method is expected to make important contribution to the technological development of metamaterials.

Prof. Junsuk Rho, the lead-researcher in the team, commented that, “Our research was successful in bringing it to a higher degree of freedom of the design, but the new design still requires users to input certain problem settings in the beginning. It sometimes produced wrong designs and therefore make it impossible to produce desired metamaterials. So, I’d like to take our findings a step further by developing a complete design method of metamaterials utilizing AI. Also, I’d like to make innovative and practical metamaterials by training AI with reviews of the design constructed in consideration of final products.

###

This research was funded by the Ministry of Science and ICT and the National Research Foundation of Korea.

Media Contact
Hyeyong Choi
[email protected]

Related Journal Article

http://dx.doi.org/10.1021/acsami.9b05857

Tags: Computer ScienceNanotechnology/MicromachinesSuperconductors/SemiconductorsTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Scientists Unveil Universal Quantum Entanglement Laws Spanning All Dimensions

Scientists Unveil Universal Quantum Entanglement Laws Spanning All Dimensions

August 6, 2025
Breakthrough in Soliton Microcombs Using X-Cut LiNbO₃ Microresonators

Breakthrough in Soliton Microcombs Using X-Cut LiNbO₃ Microresonators

August 6, 2025

Revolutionizing Ultrafast Demagnetization: Advances in Magnetic Field Acceleration

August 5, 2025

Scientists Investigate ‘Super Alcohol’ Offering Clues to Life Beyond Earth

August 5, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Neuropsychiatric Risks Linked to COVID-19 Revealed

    74 shares
    Share 30 Tweet 19
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    46 shares
    Share 18 Tweet 12
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Erythritol Levels in Korean Foods Analyzed

Zhou Secures Funding to Develop Innovative Performance Profiling and Analysis Infrastructure for Scientific Deep Learning Workloads

Advances in Bone Microstructure Reveal Forensic Clues

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.