• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, December 25, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Artificial fluorescent membrane lipid shows active role in living cells

Bioengineer by Bioengineer
June 5, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: (c) 2017 Kinoshita M. et al. Journal of Cell Biology. VOL:216 NO:4 1183-1204. doi: 10.1083/jcb.201607086

Osaka, Japan – Biological membranes, such as those surrounding animal cells, are made up of lipids and proteins. Because these molecules do not usually mix well, they are distributed within different regions of the membrane. This segregation is achieved in a number of ways, including the formation of domains based on particular lipids such as cholesterol or sphingomyelin (SM). These two lipids are required for the generation of cholesterol-dependent raft domains, which are necessary for signaling within the plasma membrane. However, it was not clear how SMs interacted with other molecules of raft domains, mainly because of the lack of a suitable synthetic probe of SM. Now, research led by Osaka University in collaboration with JST ERATO Lipid Active Structure Project has developed new fluorescent synthetic molecules (analogs) that structurally mimic SMs and can be studied in live cells. The study was reported in J Cell Biol.

Existing fluorescent SM analogs behave differently from their fully functional natural counterparts. For example, they usually separate into a different type of fluid phase from that seen in living membranes. Moreover, those synthetic analogs that do split into the correct fluid phase produce a weak fluorescent signal, quickly lose their pigment, or sometimes need to be excited by UV light.

Researchers at Osaka University overcame these limitations with fluorescent SM analogs by joining several fluorescent chemical compounds (fluorophores) that were highly hydrophilic to the hydrophobic lipid part (mainly acyl chains) of the synthetic molecule. "We took care to ensure that the positive charge of the headgroup was maintained by not modifying its lipid part," co-first author Masanao Kinoshita says. "This was achieved by keeping the fluorescent compounds away from the headgroup using a long linker component."

After confirming that the synthetic molecules behaved similarly to natural SM by using simple model membranes, the team next used highly sensitive single-molecule imaging to monitor the role of SMs in living cell membranes.

"We observed interactions of the SM analogs with each other and with CD59, which is a type of lipid receptor that is commonly used to link proteins to the plasma membrane," corresponding author Nobuaki Matsumori says. "These interactions were shown to sometimes require the presence of cholesterol as well as an alcohol component of SMs."

Further analysis revealed the dynamic behavior of SMs as they rapidly associated and dissociated from raft domains involving different formations of CD59 and with the plasma membrane. These findings may help in modifying future molecular interactions such as increasing their rate or complexity.

###

Media Contact

Saori Obayashi
[email protected]
81-661-055-886
@osaka_univ_e

http://www.osaka-u.ac.jp/en

Original Source

http://resou.osaka-u.ac.jp/en/research/2017/20170322_1 http://dx.doi.org/10.1083/jcb.201607086

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Male-Biased Immune Changes in Late-Onset Preeclampsia

Male-Biased Immune Changes in Late-Onset Preeclampsia

December 24, 2025
blank

Mitochondrial Recombination Fuels Rapid Fish DNA Evolution

December 24, 2025

Immune Response Differences Influence Parkinson’s Disease Progression

December 24, 2025

Unlocking Xiangyang Black Pig Genetics Through Resequencing

December 24, 2025
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    54 shares
    Share 22 Tweet 14
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    51 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Tailoring Cellular Structures for Precise Nonlinear Mechanics

Key Risk Factors for Type 1 Diabetes Hypoglycemia

Global Study Reveals Financial Strain in CKD Patients

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.