• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

ARS-developed Varroa-resistant honey bees better winter survivors

Bioengineer by Bioengineer
April 7, 2022
in Biology
Reading Time: 4 mins read
0
Honey bee with a varroa mite
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Baton Rouge, La., April 7, 2022—Pol-line honey bees, a type of Varroa mite resistant honey bee developed by the Agricultural Research Service, are more than twice as likely to survive through the winter than standard honey bees, according to a study published in Scientific Reports https://www.nature.com/articles/s41598-022-08643-w

Honey bee with a varroa mite

Credit: ARS-USDA

Baton Rouge, La., April 7, 2022—Pol-line honey bees, a type of Varroa mite resistant honey bee developed by the Agricultural Research Service, are more than twice as likely to survive through the winter than standard honey bees, according to a study published in Scientific Reports https://www.nature.com/articles/s41598-022-08643-w

Although ARS developed Pol-line bees in 2014, this study was the first time that they were tested head-to-head alongside standard honey bee stock in commercial apiaries providing pollination services and producing honey. Colonies’ ability to survive winter without being treated to control Varroa mites was followed in four states: Mississippi, California, and North and South Dakota.

In this study, Pol-line colonies that were given no treatment to control Varroa mites in the fall had a survival rate of 62.5 percent compared to standard bees colonies in commercial apiaries also given no fall Varroa treatment, which had a winter survival rate of 3 percent.
When Pol-line colonies and standard colonies were treated against Varroa mites in both fall and December, Pol-line bees had a winter survival rate of 72 percent while standard bees had a survival rate of 56 percent. So Pol-line bees still had a better winter survival rate regardless of receiving double Varroa mite treatment.

“These survival results continue to highlight the importance of beekeepers needing to manage Varroa infestations. The ability to have high colony survival with reduced or no Varroa treatments can allow beekeepers to save money and time,” said research molecular biologist Michael Simone-Finstrom, co-leader of the study with research entomologist Frank Rinkevich, both with the ARS Honey Bee Breeding, Genetics, and Physiology Research Laboratory in Baton Rouge, Louisiana.

This research was the culmination of breeding efforts to develop honey bee colonies with naturally low Varroa populations that began at the Baton Rouge lab in the late 1990s.

Winter colony survival is crucial for beekeepers because in February each year, about 2.5 million honey bee colonies are needed in California to pollinate almond crops. Larger, healthier colonies bring beekeepers premium pollination contracts at about $220 a colony.
Varroa mites can cause massive colony losses; they are the single largest problem facing beekeepers since they spread to the United States from Southeast Asia in 1987. While miticides used to control Varroa exist, resistance is developing to some of them.

“We would like to replace reliance on chemical controls with honey bees like Pol-line that have high mite resistance of their own and perform well, including high honey production, in commercial beekeeping operations. Pol-line’s high mite resistance is based on their behavior for removing Varroa by expelling infested pupae—where Varroa mites reproduce–a trait called Varroa-sensitive hygiene (VSH),” said Rinkevich.

“Beyond Pol-line bees, we need to create advanced and easy breeding selection tools that beekeepers can use to select resistance traits in their own bees to promote VSH behavior in honey bees across the country,” Simone-Finstrom said. “The great thing about this particular trait is that we’ve learned honey bees of all types express it at some level, so we know with the right tools, it can be promoted and selected in everyone’s bees.”

Evolutionary ecologist Thomas O’Shea-Wheller, now with the University of Exeter in England, who worked on the study while a post-doc with Louisiana State University under professor Kristen Healy pointed out, “This kind of resistance provides a natural and sustainable solution to the threat posed by Varroa mites. It does not rely on chemicals or human intervention.”

In addition, overall winter survival, the scientists examined the levels of viruses in Pol-line and standard bee colonies that are commonly transmitted by varroa mites.

The Pol-line colonies showed significantly lower levels of three major viruses: Deformed wing virus A, Deformed wing virus B and Chronic bee paralysis virus, all of which can cause significant problems for colonies.

“Interestingly, when we looked at the levels of virus infection separately from the levels of mite infestation, we found there wasn’t a strong correlation between viral loads and colony survival. You could not use the level of these viruses as good predictors of colony losses,” Simone-Finstrom said.

The Agricultural Research Service is the U.S. Department of Agriculture’s chief scientific in-house research agency. Daily, ARS focuses on solutions to agricultural problems affecting America. Each dollar invested in agricultural research results in $17 of economic impact.
                                                                                                                               # # #

 



Journal

Scientific Reports

DOI

10.1038/s41598-022-08643-w

Method of Research

Observational study

Subject of Research

Animals

Article Title

A Derived Honey Bee Stock Confers Resistance to Varroa destructor and Associated Viral Transmission

Article Publication Date

7-Apr-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Goat Genome Study Uncovers Genes for Adaptation

October 26, 2025
blank

Exploring TIFY Family Genes in Panax Notoginseng

October 26, 2025

Genetic Diversity and Cytotype Insights in Platostoma

October 26, 2025

Exploring Archaeal Promoters with Explainable CNN Models

October 26, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1283 shares
    Share 512 Tweet 320
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    310 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    195 shares
    Share 78 Tweet 49
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    134 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Goat Genome Study Uncovers Genes for Adaptation

Effective Neonatal Tetanus Treatment: A Nigerian Case Study

STK19 Enhances Cisplatin Efficacy in Tongue Cancer

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.