• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 9, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Army research leads to more effective training model for robots

Bioengineer by Bioengineer
December 29, 2020
in Science News
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: (Photo illustration / U.S. Army)

ADELPHI, Md. — Multi-domain operations, the Army’s future operating concept, requires autonomous agents with learning components to operate alongside the warfighter. New Army research reduces the unpredictability of current training reinforcement learning policies so that they are more practically applicable to physical systems, especially ground robots.

These learning components will permit autonomous agents to reason and adapt to changing battlefield conditions, said Army researcher Dr. Alec Koppel from the U.S. Army Combat Capabilities Development Command, now known as DEVCOM, Army Research Laboratory.

The underlying adaptation and re-planning mechanism consists of reinforcement learning-based policies. Making these policies efficiently obtainable is critical to making the MDO operating concept a reality, he said.

According to Koppel, policy gradient methods in reinforcement learning are the foundation for scalable algorithms for continuous spaces, but existing techniques cannot incorporate broader decision-making goals such as risk sensitivity, safety constraints, exploration and divergence to a prior.

Designing autonomous behaviors when the relationship between dynamics and goals are complex may be addressed with reinforcement learning, which has gained attention recently for solving previously intractable tasks such as strategy games like go, chess and videogames such as Atari and Starcraft II, Koppel said.

Prevailing practice, unfortunately, demands astronomical sample complexity, such as thousands of years of simulated gameplay, he said. This sample complexity renders many common training mechanisms inapplicable to data-starved settings required by MDO context for the Next-Generation Combat Vehicle, or NGCV.

“To facilitate reinforcement learning for MDO and NGCV, training mechanisms must improve sample efficiency and reliability in continuous spaces,” Koppel said. “Through the generalization of existing policy search schemes to general utilities, we take a step towards breaking existing sample efficiency barriers of prevailing practice in reinforcement learning.”

Koppel and his research team developed new policy search schemes for general utilities, whose sample complexity is also established. They observed that the resulting policy search schemes reduce the volatility of reward accumulation, yield efficient exploration of an unknown domains and a mechanism for incorporating prior experience.

“This research contributes an augmentation of the classical Policy Gradient Theorem in reinforcement learning,” Koppel said. “It presents new policy search schemes for general utilities, whose sample complexity is also established. These innovations are impactful to the U.S. Army through their enabling of reinforcement learning objectives beyond the standard cumulative return, such as risk sensitivity, safety constraints, exploration and divergence to a prior.”

Notably, in the context of ground robots, he said, data is costly to acquire.

“Reducing the volatility of reward accumulation, ensuring one explores an unknown domain in an efficient manner, or incorporating prior experience, all contribute towards breaking existing sample efficiency barriers of prevailing practice in reinforcement learning by alleviating the amount of random sampling one requires in order to complete policy optimization,” Koppel said.

The future of this research is very bright, and Koppel has dedicated his efforts towards making his findings applicable for innovative technology for Soldiers on the battlefield.

“I am optimistic that reinforcement-learning equipped autonomous robots will be able to assist the warfighter in exploration, reconnaissance and risk assessment on the future battlefield,” Koppel said. “That this vision is made a reality is essential to what motivates which research problems I dedicate my efforts.”

The next step for this research is to incorporate the broader decision-making goals enabled by general utilities in reinforcement learning into multi-agent settings and investigate how interactive settings between reinforcement learning agents give rise to synergistic and antagonistic reasoning among teams.

According to Koppel, the technology that results from this research will be capable of reasoning under uncertainty in team scenarios.

###

This research, conducted in collaboration with Princeton University, University of Alberta and Google Deepmind, was a spotlight talk at NeurIPS 2020, one of the premiere conferences that fosters the exchange of neural information processing systems research in biological, technological, mathematical and theoretical aspects.

Media Contact
Jenna Brady
[email protected]

Original Source

https://www.army.mil/article/242079/army_research_leads_to_more_effective_training_model_for_robots

Tags: Computer ScienceResearch/DevelopmentRobotry/Artificial IntelligenceTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Groundbreaking Cancer Therapy Advances to Phase 2 Trials

September 9, 2025
blank

Revolutionizing European Legume Breeding: Advancements for a Competitive Seed Market and Sustainable Protein Production

September 9, 2025

IITA-CGIAR Scientist Honored as 2025 Africa Food Prize Laureate for Pioneering Advances in Cassava and Yam Seed Systems

September 9, 2025

ChatGPT in Nursing: Benefits and Challenges Explored

September 9, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14
  • Physicists Develop Visible Time Crystal for the First Time

    50 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Groundbreaking Cancer Therapy Advances to Phase 2 Trials

Revolutionizing European Legume Breeding: Advancements for a Competitive Seed Market and Sustainable Protein Production

IITA-CGIAR Scientist Honored as 2025 Africa Food Prize Laureate for Pioneering Advances in Cassava and Yam Seed Systems

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.