• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Army project may improve military communications by boosting 5G technology

Bioengineer by Bioengineer
November 21, 2019
in Science News
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Carbonics, Inc.

RESEARCH TRIANGLE PARK, N.C. (Nov. 21, 2019) — An Army-funded project may boost 5G and mm-Wave technologies, improving military communications and sensing equipment.

Carbonics, Inc., partnered with the University of Southern California to develop a carbon nanotube technology that, for the first time, achieved speeds exceeding 100GHz in radio frequency applications. The milestone eclipses the performance — and efficiency — of traditional Radio Frequency Complementary Metal-Oxide Semiconductor, known as RF-CMOS technology, that is ubiquitous in modern consumer electronics, including cell phones.

“This milestone shows that carbon nanotubes, long thought to be a promising communications chip technology, can deliver,” said Dr. Joe Qiu, program manager, solid state and electromagnetics at the Army Research Office. “The next step is scaling this technology, proving that it can work in high-volume manufacturing. Ultimately, this technology could help the Army meet its needs in communications, radar, electronic warfare and other sensing applications.”

The research was published in the journal Nature Electronics.

The work, funded by ARO, an element of U.S. Army Combat Capabilities Development Command’s Army Research Laboratory, is a part of a Small Business Technology Transfer Program. The program focuses on feasibility studies leading to prototype demonstration of technology for specific applications.

For nearly two decades, researchers have theorized that carbon nanotubes would be well suited as a high-frequency transistor technology due to its unique one-dimensional electron transport characteristics. The engineering challenge has been to assemble the high-purity semiconducting nanotubes into densely aligned arrays and create a working device out of the nanomaterial.

Carbonics, a venture backed start-up, and USC, successfully overcame this challenge. Projections based on scaling single carbon nanotube device metrics suggest the technology could ultimately far exceed the top-tier incumbent RF technology, Gallium Arsenide.

Carbonics employs a deposition technology called ZEBRA that enables carbon nanotubes to be densely aligned and deposited onto a variety of chip substrates including silicon, silicon-on-insulator, quartz and flexible materials. This allows the technology to be directly integrated with traditional CMOS digital logic circuits, overcoming the typical problem of heterogeneous integration.

“With this exciting accomplishment, the timing is ripe to leverage our CMOS-compatible technology for the 5G and mm-Wave defense communication markets,” said Carbonics’ CEO Kos Galatsis. “We are now engaged in licensing and technology transfer partnerships with industry participants, while we continue to advance this disruptive RF technology.”

###

In 2014, Carbonics spun-out from the joint center of UCLA-USC and King Abdulaziz City for Science and Technology in Saudi Arabia called the Center of Excellence for Green Nanotechnologies.

The research is based in part, on work funded by the Army more than 10 years ago at University of California Irvine. A graduate student who worked on that project for his doctoral thesis research, Dr. Christopher Rutherglen, is now Carbonics’ chief technology officer.

The CCDC Army Research Laboratory is an element of the U.S. Army Combat Capabilities Development Command. As the Army’s corporate research laboratory, ARL discovers, innovates and transitions science and technology to ensure dominant strategic land power. Through collaboration across the command’s core technical competencies, CCDC leads in the discovery, development and delivery of the technology-based capabilities required to make Soldiers more effective to win our Nation’s wars and come home safely. CCDC is a major subordinate command of the U.S. Army Futures Command.

Media Contact
Lisa Bistreich-Wolfe
[email protected]
919-549-4372

Original Source

https://www.army.mil/article/230198/

Related Journal Article

http://dx.doi.org/10.1038/s41928-019-0326-y

Tags: Electrical Engineering/ElectronicsNanotechnology/MicromachinesTechnology/Engineering/Computer ScienceTelecommunications
Share12Tweet8Share2ShareShareShare2

Related Posts

CRISPR Screen Uncovers Novel Regulator of Androgen Receptor in Prostate Cancer

November 5, 2025

Breakthrough Discovery Uncovers Bowel Cancer’s “Big Bang” Moment

November 5, 2025

Decoding How Viruses Outperform Expectations

November 5, 2025

Exploring Black Hole Varieties: A Novel Approach Challenges Einstein’s Theory

November 5, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1298 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

CRISPR Screen Uncovers Novel Regulator of Androgen Receptor in Prostate Cancer

Breakthrough Discovery Uncovers Bowel Cancer’s “Big Bang” Moment

Decoding How Viruses Outperform Expectations

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.