• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, November 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Arming drug hunters, chemists design new reaction for drug discovery

Bioengineer by Bioengineer
November 15, 2018
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Juan Alegre-Requena/Colorado State University

If pharmaceutical chemists are the drug hunters who discover new medicines, scientists like Andrew McNally and Robert Paton are the armorers – the deft creators who arm drug hunters with the sharpest tools.

The pair of Colorado State University organic chemists have forged a powerful new such tool for drug hunters – a simple, elegantly designed chemical reaction that could fling open an underexplored wing of biologically relevant chemistry. Their contribution, detailed in the journal Science Nov. 16, could be a shot in the arm for the discovery of new drugs.

Assistant Professor McNally, a synthetic chemist, and Associate Professor Paton, an expert in computational chemical design, joined forces to create a new carbon-carbon bond reaction that's fundamental to how small-molecule drugs are made and discovered. The reaction uses phosphorus, rather than a commonly used transition metal, to stitch together molecular rings called pyridines. The lack of an accessible chemical reaction for coupling pyridine rings had been a deficiency in the field of drug discovery.

The new reaction, created in McNally's lab, is analogous to the well-known palladium-catalyzed cross-coupling reaction, which makes carbon-carbon bonds using the transition metal palladium as a point of contact. Palladium-catalyzed reactions, which were the subject of the 2010 Nobel Prize in Chemistry, have been used for 30-plus years in pharmaceutical labs as the workhorse chemistry for coupling benzene rings. Benzene coupling is a foundational reaction in many pharmaceutically active compounds, from which thousands of drugs today – painkillers, antimalarials, contraceptives – were first synthesized in laboratories.

But the palladium-catalyzed reaction, for which the late CSU chemist John Stille was a major innovator in the 1970 and 80s, does not work as well for coupling pyridine rings. Coupled pyridine rings are a potentially valuable pharmacophore, or chemical part known to interact with a biological system – the basis for how drugs interact with the body. McNally's creation thus allows for easy construction of traditionally difficult-to-make chemical compounds that are known biological targets. They offer potential for discovery of drugs for diseases old and new – a new arsenal of tools previously out of reach.

"A major goal for our lab has always been for anyone in a pharmaceutical setting to go into the lab and try out our chemistry," McNally said. "If people can pick this up and start to use it to discover drug leads, that would be an incredible win. We have used the transition metal chemistry for many years, but to get a new approach in there has been quite hard. We've tried to make this as easy as possible."

Collaborating with Paton's lab was integral to the discovery of the new reaction, McNally said, because experimentation alone could not have yielded their resulting model. Paton specializes in quantum chemistry, using it to rationally design new chemical structures to carry out specific tasks. Through these methods, Paton and his team validated the use of phosphorus, and followed the mechanism by which the challenging pyridine coupling is orchestrated.

"This is the first study we know of that gives us a complete understanding of how these bonds are made," McNally said. "People had viewed these phosphorus-mediated reactions as somewhat esoteric, with no practical significance. The model we developed has also allowed us to develop other reactions that will be valuable to the pharmaceutical industry that are ongoing in our laboratory."

Paton says he hopes medicinal chemists use this new chemistry to develop libraries of compounds with phosphorus-catalyzed pyridine couplings, and that these libraries could open doors for new drug treatments.

"We want to give people reliable methods they can use every day to make important molecules," McNally said.

###

Media Contact

Anne Manning
[email protected]
970-491-7099
@ColoStateNews

Home

Share12Tweet8Share2ShareShareShare2

Related Posts

Brain Dissection Photogrammetry Maps Human White Matter

Brain Dissection Photogrammetry Maps Human White Matter

November 6, 2025
blank

Scientists Uncover New ‘Hook’ Mechanism in Motor Proteins That Ensures Precise Neuronal Cargo Transport

November 6, 2025

Motor Cortex Directly Drives Limb Muscles in Climbing

November 6, 2025

Three Newly Discovered Toad Species Bypass Tadpole Stage, Give Birth to Live Toadlets

November 6, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1300 shares
    Share 519 Tweet 325
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    206 shares
    Share 82 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Brain Dissection Photogrammetry Maps Human White Matter

Scientists Uncover New ‘Hook’ Mechanism in Motor Proteins That Ensures Precise Neuronal Cargo Transport

Motor Cortex Directly Drives Limb Muscles in Climbing

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.