• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, November 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Are you with me? New model explains origins of empathy

Bioengineer by Bioengineer
April 8, 2019
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers at the Max Planck Institute and the Santa Fe Institute have developed a new model to explain the evolutionary origins of empathy and other related phenomena, such as emotional contagion and contagious yawning. The model suggests that the origin of a broad range of empathetic responses lies in cognitive simulation. It shifts the theoretical focus from a top-down approach that begins with cooperation to one that begins with a single cognitive mechanism.

According to Fabrizio Mafessoni, who is a post-doctoral researcher at the Max Planck Institute for Evolutionary Anthropology, standard theoretical models of the origins of empathy tend to focus on scenarios in which coordination or cooperation are favored.

Mafessoni, and his co-author Michael Lachmann, a theoretical biologist and Professor at the Santa Fe Institute, explored the possibility that the cognitive processes underlying a broad range of empathetic responses — including emotional contagion, contagious yawning, and pathologies like echopraxia (compulsive repetition of others’ movements) and echolalia (compulsive repetition of others’ speech) — could evolve in the absence of kin selection or any other mechanism directly favoring cooperation or coordination.

Mafessoni and Lachmann posited that animals, including humans, can engage in the act of simulating the minds of others. We cannot read other minds — they are like black boxes to us. But, as Lachmann explains, all agents share almost identical “black boxes” with members of their species, and “they are constantly running simulations of what other minds might be doing.” This ongoing as-actor simulation is not necessarily geared toward cooperation: it’s just something humans and animals do spontaneously.

An example of this process is represented by mirror neurons: it has been known for some time that the same neurons engaged in planning a hand movement are also used when observing the hand movement of others. Mafessoni and Lachmann wondered what the consequences would be if they were to extend that process of understanding to any social interaction.

When they modeled outcomes rooted in cognitive simulation, they found that actors engaged in as-actor simulation produce a variety of systems typically explained in terms of cooperation or kin-selection. They also found that an observer can occasionally coordinate with an actor even when this outcome is not advantageous. Their model suggests that empathetic systems do not evolve solely because agents are disposed to cooperation and kin-selection. They also evolve because animals simulate others to envision their actions. According to Mafessoni, “the very origin of empathy may lie in the need to understand other individuals.”

For Lachmann, their findings “completely change how we think about humans and animals.” Their model is grounded in a single, cognitive mechanism that unifies a broad set of phenomena under one explanation. It therefore has theoretical import for a wide range of fields, including cognitive psychology, anthropology, neuroscience, complex systems, and evolutionary biology. Its power stems from both its unifying clarity and its theoretical interest in the limits of cooperation as an explanatory frame.

###

Media Contact
J. Marshall
[email protected]
http://dx.doi.org/10.1038/s41598-019-41835-5

Tags: Algorithms/ModelsBehaviorEvolutionSocial/Behavioral ScienceSystems/Chaos/Pattern Formation/Complexity
Share13Tweet8Share2ShareShareShare2

Related Posts

Endometrial Metabolomics Reveals Gestational Differences in Pigs

Endometrial Metabolomics Reveals Gestational Differences in Pigs

November 23, 2025
Identifying Heat Shock Factors in Myricaria laxiflora

Identifying Heat Shock Factors in Myricaria laxiflora

November 22, 2025

Unveiling Genetic Diversity in Mediterranean Durum Wheat

November 22, 2025

FXR1-FUBP1 Axis: Key to LUSC Chemotherapy Resistance

November 22, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    202 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    119 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    92 shares
    Share 37 Tweet 23
  • Scientists Create Fast, Scalable In Planta Directed Evolution Platform

    95 shares
    Share 38 Tweet 24

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Pneumatic and Cold Compression: Impact on Athlete Recovery

Menopause’s Impact on Mental Health Explored

Endometrial Metabolomics Reveals Gestational Differences in Pigs

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.