• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Ants use collective ‘brainpower’ to navigate obstacles

Bioengineer by Bioengineer
May 12, 2020
in Chemistry
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New findings reveal how ants increase their collective sensing power to help them navigate complex terrains

IMAGE

Credit: Judy Gallagher (CC BY 2.0 – https://creativecommons.org/licenses/by/2.0)

Ants use their numbers to overcome navigational challenges that are too large and disorienting to be tackled by any single individual, reports a new study in the open-access journal eLife.

The results demonstrate the potential advantages of group living and collective cognition in making certain environments habitable for a species.

“Cooperation is a common means by which animals can increase their cognitive capacity, and we were intrigued as to whether this cooperation allows ants to extend the range of environments in which they can efficiently collect food,” says first author Aviram Gelblum, a postdoctoral fellow in senior author Ofer Feinerman’s lab at the Weizmann Institute of Science, Israel. “We addressed this question by studying the cooperative transport of ants as they attempted to transport large loads through semi-natural environments.”

A semi-natural labyrinth was created by randomly spreading cubes of the same size across a surface, to mimic a random stone-riddled terrain. Longhorn crazy ants were then tracked while they carried food to a target – their nest – and the coordinates of the food load, the ants and cubes were extracted using image processing. As the number of cubes increased and the maze became more complex, the ants became slower at solving it. They were still able to solve mazes with up to 55% cube coverage, but at 60% coverage most mazes become physically impassable. Importantly, the challenges imposed by the cubes were practically invisible to individual ants that could easily traverse the maze through paths that were blocked for the much larger load.

The team then compared the ants’ performance to a well-established model of movement – a random walk that is biased towards a certain direction. In this model, direction is changed in response to the physical feedback of hitting a barrier – in this case, a cube surface – so that eventually the way through is discovered. They found that the ants outperformed the computer model on all but the very simplest cube configurations. The higher the number of cubes in the labyrinth, the better the ants were at solving it compared to the computer model.

To work out how the ants outperformed the computer model, they looked at how the ants spent much longer walking away from the target they were trying to reach. This change in movement could not be explained solely by the physical feedback of encountering a cube. However, it is known that collective movement of ants is guided by leader ants who sense information around the group but do not carry the load.

When the team looked more closely at these non-carrying ants, they found they were spread across a circular region from the carrying population with an outer radius of up to 10cm. Although only a few ants were this far out, even a single leader ant was able to steer the group and guide it as far as 10cm to avoid a physical barrier.

They also noticed that when ants carrying a load got stuck, leader ants constantly presented the carrying group with potential crossing routes. Coordinated movement then allowed the entire group to explore the suggested routes, until they found an escape route that bypassed the obstacle. In this way, the ants were able to extend their sensing range beyond the immediate proximity and, potentially, gain a better idea of the obstacles they were facing.

To see whether this extended sensing was key to solving the labyrinth, the team tested whether this ‘sensing’ could improve the computer’s ability to avoid the cubes. As anticipated, setting the sensing range to match that of the ants allowed the computer model to match the ants’ performance in the labyrinth. By contrast, increasing the sensing range to above that of the ants had no effect on the computer’s performance, suggesting the ants had worked out the optimal sensing range for that specific maze.

“We have shown that, in this environment, ants use their numbers to collectively extend how far they can sense,” concludes senior author Ofer Feinerman, the Henry J. Leir Professorial Chair of the Department of Physics of Complex Systems, Weizmann Institute of Science, Israel. “Although this extension is modest, it allows for extremely fast traversal times that are better than known physical movement models for navigating disordered environments.”

###

Reference

The paper ‘Ant collective cognition allows for efficient navigation through disordered environments’ can be freely accessed online at https://doi.org/10.7554/eLife.55195. Contents, including text, figures and data, are free to reuse under a CC BY 4.0 license.

Media contact

Emily Packer, Senior Press Officer

eLife

[email protected]

01223 855373

About eLife

eLife is a non-profit organisation created by funders and led by researchers. Our mission is to accelerate discovery by operating a platform for research communication that encourages and recognises the most responsible behaviours. We work across three major areas: publishing, technology and research culture. We aim to publish work of the highest standards and importance in all areas of biology and medicine, including Ecology and the Physics of Living Systems, while exploring creative new ways to improve how research is assessed and published. We also invest in open-source technology innovation to modernise the infrastructure for science publishing and improve online tools for sharing, using and interacting with new results. eLife receives financial support and strategic guidance from the Howard Hughes Medical Institute, the Knut and Alice Wallenberg Foundation, the Max Planck Society and Wellcome. Learn more at https://elifesciences.org/about.

To read the latest Ecology research published in eLife, visit https://elifesciences.org/subjects/ecology.

And for the latest in the Physics of Living Systems, see https://elifesciences.org/subjects/physics-living-systems.

Media Contact
Emily Packer
[email protected]

Original Source

https://elifesciences.org/for-the-press/213b9ee4/ants-use-collective-brainpower-to-navigate-obstacles

Related Journal Article

http://dx.doi.org/10.7554/eLife.55195

Tags: BiologyBiomechanics/BiophysicsEcology/EnvironmentEntomology
Share12Tweet8Share2ShareShareShare2

Related Posts

Innovative Hydrogel Surface Boosts Oil–Water Separation Speed by 5×

Innovative Hydrogel Surface Boosts Oil–Water Separation Speed by 5×

August 19, 2025
blank

Magnetic Forces Boost Water Electrolysis in Microgravity

August 19, 2025

Tropical Trees Cool the Planet More and Resist Burning Better

August 18, 2025

SwRI Study Validates Long-Standing Theoretical Models of Solar Reconnection

August 18, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    80 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Study Shows Intensive Blood Pressure Targets Offer Cost-Effective Benefits

Innovative Hydrogel Surface Boosts Oil–Water Separation Speed by 5×

Assembly-Dependent Feedback Controls Photosynthetic Protein Translation

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.