• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Anti-tumor effect of novel plasma medicine caused by lactate

Bioengineer by Bioengineer
December 14, 2016
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Nagoya University

Nagoya, Japan – Physical plasma is one of the four fundamental states of matter, together with solid, liquid, and gas, and can be completely or partially ionized (thermal/hot or non-thermal/cold plasma, respectively). Non-thermal plasma has many industrial applications, but plasma medicine is a new field of therapy based on non-thermal atmospheric pressure plasma that has been used in cancer treatment, wound healing, and blood coagulation. Plasma is known to react with air to produce highly reactive free radicals, and with liquid to produce long-lived reactive molecules that can be used for chemotherapy. However, the exact components responsible for the anti-tumor effects were unknown.

Now, a research team based at Nagoya University used plasma to activate Ringer's solution, a salt solution with existing therapeutic functions, and showed that its lactate component had anti-tumor effects. The study was reported in Scientific Reports.

Previous work by the researchers developed plasma-activated cell culture medium as a form of chemotherapy, but selected Ringer's solution in the present work because of its simpler composition and likelihood of forming less complex reaction products. Ringer's lactate solution (Lactec) was irradiated with plasma for 3-5 minutes, after which it demonstrated anti-tumor effects on brain tumor cells.

Other plasma-activated solutions have previously been shown to induce reactive oxygen species within cells, but these were not detected in plasma-activated Lactec (PAL)-treated cells, suggesting an alternative mechanism triggered cell death. Analysis of PAL identified high levels of hydrogen peroxide, which is a known anti-tumor factor and the probable cause of cell death.

Lactec contains lactate and the salts sodium chloride, calcium chloride, and potassium chloride, in addition to water, so the team systematically analyzed plasma-activated synthetic versions of each component to identify which was responsible for killing cancer cells. "Only lactate demonstrated anti-tumor properties and generated hydrogen peroxide following plasma irradiation," first author Hiromasa Tanaka says. "This indicates that activated lactate increases intracellular hydrogen peroxide levels which cause apoptosis of the tumor cells."

Some cell types were not killed by treatment with PAL, suggesting it could be used as a specific tumor therapy. "PAL also appears to be safe for use in vivo," corresponding author Kae Nakamura says, "as we observed no adverse effects when PAL successfully reduced the tumor volume of mice."

###

The article "Non-thermal atmospheric pressure plasma activates lactate in Ringer's solution for anti-tumor effects" was published in the Nature journal Scientific Reports at DOI: 10.1038/srep36282

Media Contact

Koomi Sung
[email protected]

http://www.nagoya-u.ac.jp/en/

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Prophylaxis Outcomes with rIX-FP and rFIXFc in Hemophilia B

August 27, 2025

Enhancing Living Donation Education Through Multimedia Collaboration

August 27, 2025

Mobile Medical Solutions for Fair Healthcare Access

August 27, 2025

Exploring the Landscape of Biomedical Engineering Education

August 27, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    148 shares
    Share 59 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Prophylaxis Outcomes with rIX-FP and rFIXFc in Hemophilia B

Enhancing Living Donation Education Through Multimedia Collaboration

Mobile Medical Solutions for Fair Healthcare Access

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.