• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Annotation tool provides step toward understanding links between disease, mutant RNA

Bioengineer by Bioengineer
May 18, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

CORVALLIS, Ore. – Researchers at Oregon State University have developed a computer program that represents a key step toward better understanding the connections between mutant genetic material and disease.

Known as bpRNA, the software is a big-data annotation tool for secondary structures in ribonucleic acids.

"It's capable of parsing RNA structures, including complex pseudoknot-containing RNAs, so you end up with an objective, precise, easily-interpretable description of all loops, stems and pseudoknots," said corresponding author David Hendrix. "You also get the positions, sequence and flanking base pairs of each structural feature, which enables us to study RNA structure en masse at a large scale."

RNA works with DNA, the other nucleic acid – so named because they were first discovered in the cell nuclei of living things – to produce the proteins needed throughout the body. DNA contains a person's hereditary information, and RNA delivers the information's coded instructions to the protein-manufacturing sites within the cells. Many RNA molecules do not encode a protein, and these are known as noncoding RNAs.

"There are plenty of examples of disease-associated mutations in noncoding RNAs that probably affect their structure, and in order to statistically analyze why those mutations are linked to disease we have to automate the analysis of RNA structure," said Hendrix, assistant professor of biochemistry and biophysics in the College of Science. "RNA is one of the fundamental, essential molecules for life, and we need to understand RNAs' structure to understand how they function."

Secondary structures are the base-pairing interactions within a single nucleic acid polymer or between two polymers. DNA has mainly fully base-paired double helices, but RNA is single stranded and can form complicated interactions.

Hendrix says bpRNA, presented this month in a paper in Nucleic Acids Research, features the largest and most detailed database to date of secondary RNA structures.

"To be fair it's a meta-database, but our special sauce is the tool to annotate everything," said Hendrix, who is also an assistant professor in the OSU College of Engineering. "Before there was no way of saying where all the structural features were in an automated way. We provide a color-coded map of where everything is. These annotations will enable us to identify statistical trends that may shed light on RNA structure formation and may open the door for machine learning algorithms to predict secondary RNA structure in ways that haven't been possible."

Researchers have successfully tested the tool on more than 100,000 structures, "many of which are very complex, with lots of complex pseudoknots."

"Every day new RNAs are discovered and researchers are making huge progress in understanding their function," Hendrix said. "We're starting to appreciate that the genome is full of noncoding RNAs in addition to messenger RNAs, and they're important biological molecules with big effects on human health and disease."

###

Collaborating with Hendrix were Padideh Danaee, Mason Rouches, Michelle Wiley, Dezhong Deng and Liang Huang, all of Oregon State.

The National Institutes of Health, the National Science Foundation and the Medical Research Foundation supported this research.

Editor's note: A graphic is available at https://flic.kr/p/27dTBXX.

Media Contact

David Hendrix
[email protected]
541-737-6224
@oregonstatenews

http://oregonstate.edu/

http://bit.ly/2KDM0b5

Related Journal Article

http://dx.doi.org/10.1093/nar/gky285

Share12Tweet7Share2ShareShareShare1

Related Posts

Aureobasidium Boosts Citrus Pectin’s Antioxidant Power

Aureobasidium Boosts Citrus Pectin’s Antioxidant Power

October 28, 2025
blank

Killer Whale Genomes Reveal Long-Term Mutation Purging

October 28, 2025

AAAS Expands Science Partner Journal Program with Launch of Cancer Communications

October 28, 2025

Z-GENIE: Easy Tool for Predicting Z-DNA Regions

October 28, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1287 shares
    Share 514 Tweet 321
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    310 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    198 shares
    Share 79 Tweet 50
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    135 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Engineered Receptors Enhance T Cells’ Ability to Combat Cancer

Scientists Create Ultrasound Probe That Captures Full-Organ 4D Imaging

Link Between Academic Success and Internalizing Disorders

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.