• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, January 25, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Anions and cations in dual-ion batteries act like cowherd and weaver girl

Bioengineer by Bioengineer
March 28, 2019
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: TANG Yongbing

Dual-ion batteries (DIBs), in which both cations and anions are involved in the electrochemical redox reaction, are one of the most promising candidates to meet the low-cost requirements of commercial applications. Compared with conventional lithium-ion batteries (LIBs), they have advantages like high working voltage, excellent safety, and environmental friendliness.

A research team led by Prof. TANG Yongbing and Dr. ZHOU Xiaolong at the Shenzhen Institutes of Advanced Technology (SIAT) of the Chinese Academy of Sciences along with other collaborators jointly published an invited review article entitled “Beyond Conventional Batteries: Strategies towards Low-Cost Dual-Ion Batteries with High Performance” on Angew. Chem. Int. Ed.

DIBs have attracted worldwide attention for their high working voltage, low cost, ease of recycling, and low environmental impact, etc. However, due to the compaction density of graphite and limitation of theoretical capacity, the traditional double carbon structure of DIBs has a low energy density.

In 2016, Prof. TANG’s group designed a novel aluminum-graphite DIB that realized the idea of integrating the electrodes. It used aluminum foil, which is cheap and environmentally friendly, as the cathode active material and current collector at the same time, and graphite as the anode material to build a new aluminum-graphite DIB system with high efficiency and low cost.

The anion and cathode are like the Cowherd and the Weaver Girl, two lovers in a Chinese fairy tale, who can only meet once a year on a magpie bridge in the sky: The two lovers are separated by the vast Milky Way Galaxy (electrolytes), but with the help of the magpie bridge (ion channel), they meet each other (discharge), and then return to their own places (charge). This cycle continuously repeats.

The main differences between DIBs and LIBs can be summarized as: The anion intercalates into the cathode during charge, which leads to both the different electrochemical energy storage mechanism and high working voltage. Since the anions come from electrolytes, the electrolytes are also considered active materials in DIBs; therefore, in the charge-discharge process, anions and cations are separated and reunited in the electrolyte.

The team also extended the new idea of integrated design to the abundant alkali (alkaline earth) metal-ion battery system. They successfully developed an environmentally friendly and low-cost sodium-based DIB – the potassium-ion based DIB – and the room temperature high-working-voltage calcium-ion battery, thus laying a very solid foundation for the industrial application of such integrated technology.

###

Media Contact
ZHANG Xiaomin
[email protected]

Related Journal Article

http://dx.doi.org/10.1002/ange.201814294

Tags: Chemistry/Physics/Materials SciencesEnergy/Fuel (non-petroleum)
Share13Tweet8Share2ShareShareShare2

Related Posts

blank

New Route to Strychnos Alkaloids via Thiophene Cycloadditions

January 23, 2026
Lithium Metal Powers Electrochemical PFAS Reduction Breakthrough

Lithium Metal Powers Electrochemical PFAS Reduction Breakthrough

January 20, 2026

Creating Synthetic Protein-Binding DNA Systems in Cells

January 17, 2026

Chiral Catalysis Powers Rotary Molecular Motors

January 16, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    156 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    149 shares
    Share 60 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    80 shares
    Share 32 Tweet 20
  • Digital Privacy: Health Data Control in Incarceration

    62 shares
    Share 25 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Feasibility of Wearable Trackers in Rehab Settings

Single-Cell Sequencing Reveals Cerebral Cavernous Malformations Insights

Nationwide Fall Prevention Reduces Injuries in Seniors

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.