• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

And then there was light

Bioengineer by Bioengineer
December 17, 2019
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Research provide new insights on the photoconversion mechanism of phytochromes

IMAGE

Credit: Whitney Curtis, for Washington University in St. Louis


Light provides the energy that plants and other photosynthetic organisms need to grow, which ultimately yields the metabolites that feed all other organisms on the planet. Plants also rely on light cues for developing their photosynthetic machinery and to sync their life cycles around daily and seasonal rhythms.

For example, photoreceptor pathways in plants allow them to determine how deep a seed is in the soil, to “measure” the waning daylight hours and to alter a plant’s development to prepare it for the onset of summer or the beginnings of winter.

New research from Washington University in St. Louis provides insight into how proteins called phytochromes sense light and contribute to how plants grow. The paper is published this week in the Proceedings of the National Academy of Sciences.

“Phytochromes are unique among photoreceptors because they exist in two stable yet interconvertible states: an inactive form that is synthesized in the dark and another that requires light for activation,” said Richard D. Vierstra, the George and Charmaine Mallinckrodt Professor of Biology in Arts & Sciences.

“By measuring the proportions of these two forms as they flip back and forth, phytochromes can sense light intensity, duration, light color and even day length. How these dark and light forms differ has remained enigmatic despite 60 years of research on photoreceptors.”

Vierstra and his collaborators overcame a major hurdle toward defining the sequence of events that support the transition between light- and dark-adapted states.

They discovered and characterized a crystal form of the photoreceptor PixJ from the cyanobacterium Thermosynechococcus elongatus — one that allows reversible photoconversion between the active and inactive forms. Remarkably, the crystals retain their integrity during the photoconversion process. Sethe Burgie, research scientist in biology in Arts & Sciences and first author of the paper, was able to collect the high resolution X-ray diffraction data necessary for identifying intermediates of the reaction pathway, using a sophisticated technique called X-ray crystallography.

Researchers should now be able to use newly developed X-ray free-electron lasers to acquire structural snapshots of this phytochrome crystal as it initially absorbs light through its inactive photoreceptor to when it acquires its fully mature active state — a process that is complete within a millisecond.

In a preliminary test, the Vierstra group was able to see the first twitch of the photoreceptor as the part of its chromophore that captures the light energy rotated upon photoactivation.

“In other words, it should now be possible to make an atomic-resolution molecular movie that outlines the structural transitions of the photoreceptor,” Burgie said. “We are now at the cusp of defining the internal events and sequence of physical changes that happen within phytochromes as they move between biologically inactive and active states, which will ultimately help researchers to tinker with plants to improve their agricultural yield and sustainability.”

Understanding the structural underpinnings of the photoconversion cycle is an important step toward developing modified phytochromes that endow crop plants with beneficial light-sensing properties.

“Additionally, as phytochromes sense both light and temperature, altering phytochrome function has great potential for tailoring crops better fit to specific environments and might help to expand the range of these crops,” Vierstra said.

###

Media Contact
Talia Ogliore
[email protected]
314-935-2919

Original Source

https://source.wustl.edu/2019/12/and-then-there-was-light/

Related Journal Article

http://dx.doi.org/10.1073/pnas.1912041116

Tags: BiologyCell BiologyPlant Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

Immunomodulatory Effects of Lacticaseibacillus casei Exopolysaccharides

Immunomodulatory Effects of Lacticaseibacillus casei Exopolysaccharides

October 12, 2025
Brainstem Connectivity Differences by Sex and Menopause

Brainstem Connectivity Differences by Sex and Menopause

October 12, 2025

ERβ Provides Gender-Specific Defense Against Alzheimer’s Disease

October 12, 2025

Street View Greenspace Boosts Midlife Women’s Heart Health

October 12, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1224 shares
    Share 489 Tweet 306
  • New Study Reveals the Science Behind Exercise and Weight Loss

    103 shares
    Share 41 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    100 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    89 shares
    Share 36 Tweet 22

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revolutionizing Fluid Mechanics: Stochastic Simulation Insights

Proteomic Changes Post Anti-VEGF in AMD Patients

Immunomodulatory Effects of Lacticaseibacillus casei Exopolysaccharides

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 64 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.