• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, January 15, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Ancient retrovirus embedded in the human genome helps fight HIV-1 infection

Bioengineer by Bioengineer
June 27, 2017
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Dr. Kazuaki Monde

Throughout our evolution, viruses have continually infected humans just as they do today. Some early viruses became integrated into our genome and are now known as human endogenous retroviruses (HERVs). Over millions of years, they became inert due to mutations or major deletions in their genetic code. Today, one of the most studied HERV families is the HERV-K family, which has been active since the evolutionary split of humans and chimpanzees with some members perhaps actively infecting humans within the past couple hundred thousand years.

HERVs have become a target for HIV researchers because studies have shown that T-cells produce an immune response against HERVs in those infected with HIV. It is now thought that HERV expression can be caused by HIV infection and that HIV would become an easier target by aiming at the HERV antigens rather than the ever-mutating HIV antigens. Following that idea, previous research from Kumamoto University in Japan revealed an apparent correlation between the coassembly of HIV-1 group specific antigen (Gag) and HERV-K Gag, and the reduced particle proliferation and infectivity of HIV-1. In their current study, the researchers sought to clarify how HERV-K Gag affects HIV-1 in this manner.

They reported that HERV-K Gag changes the size and morphology of progeny HIV-1 particles during the early stages of coassembly. This occurs because the HERV-K Gag capsid (CA), i.e. the virus protein shell, colocalizes (overlaps) partially with HIV-1 Gag at the plasma membrane. This also results in a reduced number of mature HIV-1 particles and lower HIV-1 release and infectivity.

"While we have found that release efficiency and infectivity of HIV-1 particles are hindered by HERV-K Gag," said project leader, Dr. Kazuaki Monde, "they appear to be products of two separate mechanisms. HIV-1 particle release from cells that also express HERV-K Gag is reduced significantly but the specifics of how infectivity is also reduced still eludes us. Certainly, more research into HERV-K CA is needed to determine how it is able to reduce both particle release and infectivity of HIV-1."

###

This research was posted online in BioMed Central's journal Retrovirology on April 26th, 2017.

[Reference]

Monde, K.; Terasawa, H.; Nakano, Y.; Soheilian, F.; Nagashima, K.; Maeda, Y. & Ono, A., Molecular mechanisms by which HERV-K Gag interferes with HIV-1 Gag assembly and particle infectivity, Retrovirology, Springer Nature, 2017.
DOI: 10.1186/s12977-017-0351-8

Media Contact

J. Sanderson
[email protected]

http://ewww.kumamoto-u.ac.jp/en/news/

Original Source

https://retrovirology.biomedcentral.com/articles/10.1186/s12977-017-0351-8 http://dx.doi.org/10.1186/s12977-017-0351-8

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Matrine B10 Targets FGFR3 Pathway to Fight Liver Cancer

January 15, 2026

Mosaic Lateral Heterostructures Boost 2D Perovskites

January 15, 2026

New Genes and Factors Linked to Colorectal Cancer

January 15, 2026

Microbiota Drives T Cell Plasticity, Tumor Control

January 15, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    155 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    147 shares
    Share 59 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    75 shares
    Share 30 Tweet 19
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

CFAP20 Rescues Stalled RNAPII During Replication

Nanopriming Enhances Wheat’s Resilience to Abiotic Stress

Profitability and Marketing Efficiency in Cattle Fattening

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.