• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Ancient Greek tholos-like architecture composed of archaeal proteins

Bioengineer by Bioengineer
February 3, 2020
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A unique archaeal protein complex having a spacious center surrounded by five columns

IMAGE

Credit: © Biomolecular Organization Research Group


Proteins often form assemblies and thereby perform sophisticated functions in cells as best exemplified by proteasomes, which are huge enzyme complexes functioning as proteolytic machines. In eukaryotes, this proteasome formation is not a spontaneous process but is assisted by several other proteins, termed proteasome-assembling chaperones. Paradoxically, archaeal genomes encode proteasome-assembling chaperone homologs, denoting a shared ancestry between genes, although archaeal proteasome formation is a spontaneous process not requiring these chaperones. Therefore, the functional roles of the archaeal chaperone-like proteins remain unknown. The collaborative groups, including researchers at Exploratory Research Center on Life and Living Systems (ExCELLS), Institute for Molecular Science (IMS), and National Institute for Physiological Sciences (NIPS) of National Institutes of Natural Sciences found that a chaperone-like protein originating from a hyperthermophilic archaeon together with another protein from the same species, whose function is also unknown, are assembled together into unique structures. The integrated biophysical data they obtained using native mass spectrometry, solution scattering, high-speed atomic force microscopy, and electron microscopy, along with atomic structure modeling, revealed that this complex forms a five-column tholos-like architecture, harboring a large central cavity, which can potentially accommodate biomolecules, such as proteins. This characteristic architecture of archaeal protein complex provides insight into the molecular evolution between archaeal and eukaryotic proteins. Furthermore, their findings offer a novel framework for designing functional protein cages as molecular warehouses or shelters that are stable in high temperatures.

###

Media Contact
Koichi Kato
[email protected]
81-564-595-226

Original Source

http://www.excells.orion.ac.jp/engnews/20200130pr-1.html

Related Journal Article

http://dx.doi.org/10.1038/s41598-020-58371-2

Tags: BiologyBiomechanics/Biophysics
Share12Tweet8Share2ShareShareShare2

Related Posts

MIT Study Reveals New Insights into Graphite’s Durability in Nuclear Reactors

MIT Study Reveals New Insights into Graphite’s Durability in Nuclear Reactors

August 15, 2025
Efficient Framework Models Ionic Materials’ Surface Chemistry

Efficient Framework Models Ionic Materials’ Surface Chemistry

August 15, 2025

Discovery of Intrinsic HOTI-Type Topological Hinge States in Photonic Metamaterials

August 15, 2025

Scientists Employ Innovative Technique in Quest to Unveil Elusive Dark Matter Particle

August 15, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Leveraging Virtual Reality to Combat Substance Use Relapse

Exploring the Gut-Heart Link: How Microbiota Influence Heart Failure

ADAMTS2: Unlocking the Therapeutic Potential of a Multifunctional Protein

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.