• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

An eye toward regeneration

Bioengineer by Bioengineer
April 19, 2018
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: UNLV Creative Serivces

A UNLV scientist and her team have found that frog embryos can fully regrow their eyes after injuries, a breakthrough that may lead one day to the ability to orchestrate tissue regeneration in humans.

The study by UNLV scientist Prof. Kelly Tseng, Ph.D., "A Model for Investigating Developmental Eye Repair in Xenopus laevis," was recently published in the journal Experimental Eye Research.

Xenopus laevis, or the South African clawed frog, are studied due to their highly regenerative traits that allow them to regrow tails, limbs, and even their brain. There was disagreement in the science community, however, that these frogs could regenerate their eyes as embryos.

"In this study, we found that removing the majority of eye tissues in an embryo resulted in rapid regrowth to a normal sized eye within 3 to 5 days," Tseng said. "Some studies suggested these embryos didn't have this ability, but we've shown conclusively that these frog embryos can regenerate their eyes."

Tseng and her students were able to confirm successful regeneration via two methods. First, the researchers saw that injured eyes were able to generate many new cells within 3 days, a key to cell regrowth in these frogs.

The second clue was that Xenopus tadpoles show a strong preference to swimming in a white background as opposed to a black background. And after eye regrowth, Tseng's tadpoles showed the same functional preference.

The team also found that apoptosis (programmed cell death), a process used in regeneration of other organs and tissues, is needed for successful eye regrowth.

"These results suggest the embryonic Xenopus eye is a powerful model for studying developmental eye repair," according to the study.

Now scientists can study the regeneration abilities of frogs and figure out what developmental mechanisms are used to repair a damaged eye.

Tseng said that because frog eye development is similar to human eye growth, it could eventually lead to a blueprint on how to induce such regrowth in humans.

By figuring out how frogs regenerate tissue, Tseng hopes she and other scientists can learn how to get stem cells to better repair or regrow tissue in humans. Of course, more research is needed, she said.

For her work, Tseng employs graduate and undergraduate student researchers and dozens of the jumpy clawed frogs.

###

Media Contact

Francis McCabe
[email protected]
702-895-5515

http://www.unlv.edu

Original Source

https://www.sciencedirect.com/science/article/pii/S0014483517306267 http://dx.doi.org/10.1016/j.exer.2018.01.007

Share12Tweet8Share2ShareShareShare2

Related Posts

Scientists Identify SARS-CoV-2 PLpro and RIPK1 Inhibitors Showing Potent Synergistic Antiviral Effects in Mouse COVID-19 Model

February 7, 2026

Neg-Entropy: The Key Therapeutic Target for Chronic Diseases

February 7, 2026

Multidisciplinary Evidence-Based Guidelines for Therapeutic Drug Monitoring of Biologics in Inflammatory Bowel Disease

February 7, 2026

Early Tuberculosis Treatment Lowers Sepsis Mortality in People with HIV

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Scientists Identify SARS-CoV-2 PLpro and RIPK1 Inhibitors Showing Potent Synergistic Antiviral Effects in Mouse COVID-19 Model

Neg-Entropy: The Key Therapeutic Target for Chronic Diseases

Multidisciplinary Evidence-Based Guidelines for Therapeutic Drug Monitoring of Biologics in Inflammatory Bowel Disease

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.