• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

An enemy within: Pathogens hide in tissue

Bioengineer by Bioengineer
December 13, 2021
in Biology
Reading Time: 3 mins read
0
3D reconstruction of murine spleen tissue
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Antibiotics cure many bacterial infections. However, some patients suffer a relapse. A research group at the University of Basel has now discovered why some bacteria can survive antibiotic therapy. The team uncovered where the bacteria hide in the body and how the body’s own immune system also plays an important role.

3D reconstruction of murine spleen tissue

Credit: Biozentrum, University of Basel

Antibiotics cure many bacterial infections. However, some patients suffer a relapse. A research group at the University of Basel has now discovered why some bacteria can survive antibiotic therapy. The team uncovered where the bacteria hide in the body and how the body’s own immune system also plays an important role.

Infections such as tuberculosis or typhoid fever are caused by bacteria and can usually be treated well with antibiotics, at least as long as the bacteria are not resistant. However, full eradication of the bacteria cannot always be achieved. In some patients, a few bacteria survive the antibiotic therapy and can cause relapsing disease. For a long time, scientists have been trying to find out why antibiotics fail to kill all the bacteria.

Professor Dirk Bumann’s group at the Biozentrum, University of Basel, has now shown, that it is not – as may be expected – due to dormant and therefore insensitive pathogens. Rather, there are certain areas in the tissue in which typhoid fever-causing Salmonella can survive more or less unaffected by the body’s immune defenses. The researchers published their results in PNAS.

Examining tissue slice by slice

«After antibiotic therapy, only about every 100th bacterium survives», says Dirk Bumann, the study leader. «Tracking down and studying these few Salmonella in tissues is like looking for the needle in the haystack.»

In order to manage this Sisyphean task, the researchers employed so-called serial two-photon tomography, a method used previously in neurobiology to detect the finest nerve fibers in the brain. The scanner device images the tissue surface and then cuts away the uppermost layer. The new surface is scanned again followed by the next cut. In this way the instrument works its way, slice by slice, through the whole tissue. This provides the scientists with a detailed three-dimensional view of the tissue and reveals where the few surviving bacteria are located.

Hidden in the Police Headquarter

In their study, the researches imaged spleens of infected mice. Most Salmonella live in the so-called red pulp of the spleen, the recycling station for red blood cells. «Here, Salmonella are almost totally eliminated during antibiotic treatment», explains Jiagui Li, one of the three first authors of the study. Some Salmonella live also in another spleen region, the white pulp, where immune responses are normally initiated. In this region, however, antibiotic therapy is rather ineffective. The white pulp thus becomes the major home of surviving Salmonella. «It’s ironic, that pathogens hide in the body exactly where they should be caught as the culprit and an effective defense against them should be activated», says Bumann.

Antibiotics alone are not enough

How do the bacteria survive in this surprising location? The scientists found that antibiotics alone cannot eradicate Salmonella from the tissue but needs the help of the immune system to clear all bacteria. In particular neutrophils, white blood cells that effectively fight bacteria, are critical. For successful eradication of Salmonella, neutrophils have to work together with the antibiotic for several days. In the white pulp, however, there are only few neutrophils and their number collapses during treatment. With fading support from host neutrophils, the antibiotic alone cannot eradicate the local Salmonella.

To overcome this problem, the research team has tried boosting the body’s defenses with the help of a simultaneously applied immune therapy. «This approach can help to stimulate the immune system and to maintain a high density of neutrophils over a longer time», explains Bumann. Indeed, such adjunct therapy may lead to more effective clearance of the bacteria opening new avenues to prevent relapses.



Journal

Proceedings of the National Academy of Sciences

DOI

10.1073/pnas.2113951118

Subject of Research

Animals

Article Title

Tissue compartmentalization enables Salmonella persistence during chemotherapy.

Share12Tweet7Share2ShareShareShare1

Related Posts

Dr. Carl Nathan Honored with David and Beatrix Hamburg Award

Dr. Carl Nathan Honored with David and Beatrix Hamburg Award

September 17, 2025
New Study Explores the Link Between Lipid Metabolism and Parkinson’s Disease

New Study Explores the Link Between Lipid Metabolism and Parkinson’s Disease

September 17, 2025

Magnetic Fields Enhance Monascus Pigment Production and Suppress Citrinin by Modulating Iron Metabolism

September 17, 2025

Single-Cell Rice Atlas Uncovers Cis-Regulatory Evolution

September 17, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

High-Intensity Interval Training Enhances Cocaine Aversion in Adolescent Lab Animals, Study Finds

Revolutionizing Cancer Treatment: The Role of Nanomaterials and the Tumor Microenvironment

New Insights into Immunotherapy Failure Offer New Hope for Cancer Patients

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.