• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, January 19, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

An end-to-end general framework for automatic diagnosis of manufacturing systems

Bioengineer by Bioengineer
February 5, 2020
in Science News
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: ©Science China Press


The manufacturing sector is envisioned to be heavily influenced by artificial intelligence-based technologies with the extraordinary increases in computational power and data volumes.

Data-driven methods use sensor data, such as vibration, pressure, temperature, and energy data to extract useful features for diagnosis and prediction. A central challenge in manufacturing sector lies in the requirement of a general framework to ensure satisfied diagnosis and monitoring performances in different manufacturing applications.

In a new research article published in the Beijing-based National Science Review, Prof. Ye Yuan from the School of Artificial Intelligence and Automation and Prof. Han Ding from the State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, jointly proposed an end-to-end diagnostic framework that can be used in diverse manufacturing systems. This framework exploits the predictive power of convolutional neural network to automatically extract hidden degradation features from noisy time-course data. The proposed framework has been tested on ten representative data sets drawn from a wide variety of manufacturing applications. Results reveal that the framework performs well in examined benchmark applications and can be applied in diverse contexts, indicating its potential use as a critical corner stone in smart manufacturing.

Considering that the potential time dependency existing among the reconstructed samples, this paper uses three standard cross-validation methods (random subsets, contiguous block, and independent sequence) to evaluate the performance of the framework. This paper also interprets how the CNN model learns from temporal manufacturing data and the robustness of the proposed framework is also discussed.

###

This research received funding from the National Natural Science Foundation of China (91748112 and 5135004).

See the article:

Ye Yuan, Guijun Ma, Cheng Cheng, Beitong Zhou, Huan Zhao, Hai-Tao Zhang, Han Ding,

A General End-to-end Diagnosis Framework for Manufacturing Systems

Natl Sci Rev 2019; doi: 10.1093/nsr/nwz190

https://doi.org/10.1093/nsr/nwz190

The National Science Review is the first comprehensive scholarly journal released in English in China that is aimed at linking the country’s rapidly advancing community of scientists with the global frontiers of science and technology. The journal also aims to shine a worldwide spotlight on scientific research advances across China.

Media Contact
Ye Yuan
[email protected]

Related Journal Article

http://dx.doi.org/10.1093/nsr/nwz190

Tags: Technology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Exploring Oxymethylene-Dimethyl-Ether in Diesel Combustion

January 19, 2026
AHCY–Adenosine Complex Boosts Fatty Acids, Cancer

AHCY–Adenosine Complex Boosts Fatty Acids, Cancer

January 19, 2026

Bilevel Optimization Revolutionizes 3D Point Cloud SLAM

January 19, 2026

Advances in Nonlinear \({\mathcal {H}}_\infty\) Control for Spacecraft

January 19, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    155 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    148 shares
    Share 59 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    78 shares
    Share 31 Tweet 20
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    54 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring Oxymethylene-Dimethyl-Ether in Diesel Combustion

AHCY–Adenosine Complex Boosts Fatty Acids, Cancer

Bilevel Optimization Revolutionizes 3D Point Cloud SLAM

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.