• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 9, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

An electrical switch to control chemical reactions

Bioengineer by Bioengineer
October 12, 2023
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New pharmaceuticals, cleaner fuels, biodegradable plastics: in order to meet society’s needs, chemists have to develop new synthesis methods to obtain new products that do not exist in their natural state. A research group at the University of Geneva (UNIGE), in collaboration with Cardiff University, has discovered how to use an external electric field to control and accelerate a chemical reaction, like a ‘‘switch’’. This work, to be read in Science Advances, could have a considerable impact on the development of new molecules, enabling not only more environmentally friendly synthesis, but also very simple external control of a chemical reaction.

An electrical switch to control chemical reactions

Credit: © Stefan Matile

New pharmaceuticals, cleaner fuels, biodegradable plastics: in order to meet society’s needs, chemists have to develop new synthesis methods to obtain new products that do not exist in their natural state. A research group at the University of Geneva (UNIGE), in collaboration with Cardiff University, has discovered how to use an external electric field to control and accelerate a chemical reaction, like a ‘‘switch’’. This work, to be read in Science Advances, could have a considerable impact on the development of new molecules, enabling not only more environmentally friendly synthesis, but also very simple external control of a chemical reaction.

In chemistry, creating complex organic chemical compounds from simpler reagents is denoted ‘‘organic synthesis’’. Through successive reactions, chemists assemble small molecules to ultimately form the desired products. Organic synthesis is crucial to the manufacture of drugs, polymers, agrochemicals, pigments and fragrances. These successive steps are extremely precise and delicate to control. To limit the required resources, the yield of each reaction step should be optimal. Achieving better control and simpler operation of these reactions remains a major research challenge.

‘‘Any molecular transformation results from electrons – negatively charged elementary particles – moving from one place in a molecule to another,’’ explains Stefan Matile, full professor in the Department of Organic Chemistry at the UNIGE’s Faculty of Science and part of the National Centre of Competence in Research (NCCR) Molecular Systems Engineering, who led the study. Electrons can be influenced by an external electric field. It is therefore theoretically possible to electrically control chemical reactions. Although simple in principle and promising in terms of impact, this approach has come up against several limitations, and its few implementations have performed poorly.

A long-awaited breakthrough

With their teams, Stefan Matile and his Cardiff University counterpart, professor Thomas Wirth, have succeeded in activating an organic chemical reaction with a simple electric field. To do this, they designed an electrochemical microfluidic reactor. Their results clearly show the dependence between the state of progress of the chemical reaction and the intensity of the applied electric field. This device enables a chemical reaction to be activated simply by flipping a switch.

‘‘This type of reactor takes the form of a small box in which the reaction mixture can circulate between two electrodes producing the electric field. The electrodes are 5 cm x 5 cm square plates placed as close together as possible. They are separated by a quarter-millimetre-thick sheet. This sheet contains the flow channel for circulating the molecules between the electrodes,’’ explains Ángeles Gutiérrez López, PhD student in Stefan Matile’s group and first author of the paper.

The electrodes are coated with carbon nanotubes. As they flow through the reactor, the reactants interact weakly with the carbon nanotubes, exposing them to the electric field. This induces electronic polarization in the molecule, activating the chemical transformation.

Towards greener activation of chemical reactions?

To create the desired chemical bonds with a high yield, chemists usually implement complex, multi-step strategies involving numerous intermediates. These strategies require important resources and energy. The new electrical device proposed by Stefan Matile and Thomas Wirth could simplify these strategies and thus reduce the carbon impact of chemical syntheses.

The device has the advantage of being easy to control. ‘‘Our ‘reactor’ is in some ways like the particle accelerator at CERN in Geneva, but instead of accelerating subatomic particles, it accelerates electrons during molecular transformations,’’ explains Stefan Matile. Fundamental advances are still needed to unlock the device’s full potential. However, this method could be applied to organic chemistry in the not-too-distant future, making the production of drugs, new fuels or new plastics greener and more controllable.



Journal

Science Advances

DOI

10.1126/sciadv.adj5502

Method of Research

News article

Subject of Research

Not applicable

Article Title

Electric-field-assisted anion-π catalysis on carbon nanotubes in electrochemical microfluidic devices

Article Publication Date

12-Oct-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Bacterial Enzyme Powers ATP-Driven Protein C-Terminus Modification

Bacterial Enzyme Powers ATP-Driven Protein C-Terminus Modification

August 9, 2025
Machine-Learned Model Maps Protein Landscapes Efficiently

Machine-Learned Model Maps Protein Landscapes Efficiently

August 9, 2025

High-Definition Simulations Reveal New Class of Protein Misfolding

August 8, 2025

Organic Molecule with Dual Functions Promises Breakthroughs in Display Technology and Medical Imaging

August 8, 2025

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    137 shares
    Share 55 Tweet 34
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    77 shares
    Share 31 Tweet 19
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    55 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

CDK1 & CDK2: Targets in Cancer Therapy

Revolutionizing Pediatric Blunt Thoracic Trauma Imaging Techniques

Trial Tests Atezolizumab Plus Capecitabine in Triple-Negative Breast Cancer

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.