• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

An artificial pathway for turning carbon dioxide into useful products

Bioengineer by Bioengineer
November 17, 2016
in Science News
Reading Time: 1 min read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers have developed a synthetic pathway to "fix" carbon dioxide – converting it into organic compounds – more quickly than can be achieved by plants. While the pathway has not yet been implemented in a living organism, the work to create an efficient carbon dioxide-fixation cycle represents an impressive technical feat, with applications including transplantation into living plants for faster, less energy-intensive carbon dioxide fixation. Although natural photosynthesis plays a vital role in absorbing carbon dioxide emitted from fossil fuel use, it has not prevented the net increase of this gas since the Industrial Revolution. This is in part because a main enzyme involved in this process is relatively slow. Other, more efficient enzymes do exist. Here, to reinvent carbon dioxide fixation using such enzymes, Thomas Schwander and colleagues carefully selected 17 enzymatic compounds from 9 organisms, bringing them together in an engineered pathway they designed to convert carbon dioxide into organic molecules. The authors used stepwise optimization, including redesign of individual enzymes involved, to further improve their cycle. Following high-resolution mass spectrometry, they demonstrated in vitro that the pathway could capture carbon dioxide at a faster rate than the natural Calvin cycle in plants. Apart from the pathway's potential application to equip plants with better photosynthetic capabilities, it could be used in systems to create carbon-based feed for cattle, or even to design desirable chemical products. A Perspective by Fuyu Gong and Yin Li provides additional insights.

###

Media Contact

Science Press Package
[email protected]
202-326-6440
@AAAS

http://www.aaas.org

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Ba-Doped MgSnO₃: A Breakthrough Electrode for Supercapacitors

September 16, 2025

TUG1 Suppression Boosts Immunity and Lenvatinib in Liver Cancer

September 16, 2025

SFU Unveils Canada’s Fastest Academic Supercomputer Following $80 Million Upgrade

September 16, 2025

GLP-1 Drugs Demonstrated as Cost-Effective Treatment for Knee Osteoarthritis and Obesity

September 15, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    66 shares
    Share 26 Tweet 17
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Ba-Doped MgSnO₃: A Breakthrough Electrode for Supercapacitors

TUG1 Suppression Boosts Immunity and Lenvatinib in Liver Cancer

SFU Unveils Canada’s Fastest Academic Supercomputer Following $80 Million Upgrade

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.