• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, November 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

An AI for deciphering what animals do all day

Bioengineer by Bioengineer
April 30, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Credit: Yuste Lab/Columbia University

Much of what biologists have learned about animal behavior over the years has come from careful observation and painstaking notes. There could soon be an easier way.

In a new study in the journal eLife, researchers at Columbia University show how an algorithm for filtering spam can learn to pick out, from hours of video footage, the full behavioral repertoire of tiny, pond-dwelling Hydra. A close relative of coral, jellies and sea anemones, Hydra is so primitive that it lacks a backbone or brain. But when it moves, feeds and evades predators, it behaves in predictable ways that a computer can recognize.

By comparing Hydra's behaviors to the firing of its neurons, the researchers hope to eventually understand how its nervous system, and that of more complex animals, works. "People have used machine learning algorithms to partly analyze how a fruit fly flies, and how a worm crawls, but this is the first systematic description of an animal's behavior," said the study's senior author, Rafael Yuste, a neuroscientist at Columbia University and a member of Columbia's Data Science Institute. "Now that we can measure the entirety of Hydra's behavior in real-time, we can see if it can learn, and if so, how its neurons respond."

Hydra's ancestors appeared on Earth some 700 million years ago, before the Cambrian explosion that gave rise to most modern species. Instead of a brain, hundreds of neurons run along its narrow, translucent body coordinating behaviors that range from basic — curling into a ball to avoid predators — to sophisticated — somersaulting to get around.

In an earlier study in Current Biology, Yuste and his colleagues recorded all of its neurons firing in real-time and discovered four sets of neural circuits that control four distinct elongation and bending behaviors, paving the way to understand how Hydra's nervous system regulates its behavior.

In the current study, the team went a step further by attempting to catalog Hydra's complete set of behaviors. To do so, they applied the popular "bag of words" classification algorithm to hours of footage tracking Hydra's every move. Just as the algorithm analyzes how often words appear in a body of text to pick out topics (and flag, for example, patterns resembling spam), it cycled through the Hydra video and identified repetitive movements.

Their algorithm recognized 10 previously described behaviors, and measured how six of those behaviors responded to varying environmental conditions. To the researchers' surprise, Hydra's behavior barely changed. "Whether you fed it or not, turned the light on or off, it did the same thing over and over again like an Energizer bunny," said Yuste.

The researchers think Hydra may have evolved a way of adjusting to its environment as if on auto-pilot. They are now experimenting with other stimuli to see if Hydra will respond and learn. Eventually, they hope to crack its neural code with a model that shows how its networks of neurons create behavior.

Lessons learned from Hydra may also be useful to a branch of engineering concerned with maintaining stability and precise control in machines, from ships to planes, navigating in highly variable conditions.

The nervous systems of even simple animals like Hydra have evolved to maintain constancy in their behaviors, said Yuste. If engineers could unlock their secret, technology could be infused with biologically-inspired controls that have evolved over hundreds of millions of years.

"Reverse engineering Hydra has the potential to teach us so many things," said the study's lead author, Shuting Han, a graduate student at Columbia.

Formerly in Yuste's lab, the study's other authors, Ekaterina Taralova and Christophe Dupre, are now at the startup Zoox Inc. and Harvard.

###

Study: Comprehensive machine learning analysis of Hydra behavior reveals a stable behavioral repertoire

Media Contact

Kim Martineau
[email protected]
646-717-0134
@columbia

http://www.columbia.edu

Original Source

http://news.columbia.edu/content/1923 http://dx.doi.org/10.7554/eLife.32605.001

Share12Tweet7Share2ShareShareShare1

Related Posts

Nurses’ Competence in Dementia Care: Current Insights

November 6, 2025

Ferroptosis in Diabetes: Insights from Research

November 6, 2025

Berberine boosts CYP3A4 expression through PXR activation

November 6, 2025

Novel Rhodanine–Sulfonate Compounds Inhibit Aldose Reductase

November 6, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1301 shares
    Share 520 Tweet 325
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    206 shares
    Share 82 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Nurses’ Competence in Dementia Care: Current Insights

Ferroptosis in Diabetes: Insights from Research

Berberine boosts CYP3A4 expression through PXR activation

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.