• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Algorithm identifies hypertensive patients who will benefit from intensive treatment

Bioengineer by Bioengineer
July 2, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: UT Southwestern

DALLAS – July 2, 2018 – Using data from large clinical trials, UT Southwestern researchers developed a way to predict which patients will benefit most from aggressive high blood pressure treatment.

The machine learning algorithm they devised combines three variables routinely collected during clinic visits and demonstrates how the emerging field of bioinformatics could transform patient care. Their work, available online now and publishing July 15 in the American Journal of Cardiology, describes a risk prediction model in which patient age, urinary albumin/creatinine ratio (UACR), and cardiovascular disease history successfully identified hypertensive patients for whom the benefits of intensive therapy outweigh the risks.

"Large randomized trials have provided inconsistent evidence regarding the benefit of intensive blood pressure lowering in hypertensive patients," said corresponding author Dr. Yang Xie, Director of the Quantitative Biomedical Research Center at UT Southwestern and of the University's Bioinformatics Core Facility. "To the best of our knowledge, this is the first study to identify a subgroup of patients who derive a higher net benefit from intensive blood pressure treatment."

Researchers used patient data from two National Institutes of Health-funded randomized controlled trials that tested intensive vs. standard blood pressure-lowering treatments – the Systolic Blood Pressure Intervention Trial (SPRINT) and the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial. The SPRINT trial included 9,361 nondiabetic hypertensive adults at an elevated risk of cardiovascular event, while ACCORD enrolled 10,251 patients with Type 2 diabetes.

"I think our algorithm can help us identify high-risk patients who will most likely benefit from intensive blood pressure reduction. Long-term intensive HBP drug therapy can reduce risk of heart failure and death, but it carries an increased risk of side effects," said co-author Dr. Wanpen Vongpatanasin, Professor of Internal Medicine and holder of the Norman and Audrey Kaplan Chair in Hypertension and the Fredric L. Coe Professorship in Nephrolithiasis Research in Mineral Metabolism.

The researchers' machine learning method determined three simple criteria to identify adults with high blood pressure who are at the highest risk for early major adverse cardiovascular events – such as cardiovascular death, heart attack, or stroke. Those criteria are: an age of 74 or older, a UACR of 34 or higher, and a history of clinical cardiovascular disease, such as heart disease, stroke, or heart failure. Patients who met one or more of the three criteria were predicted to be among a high-risk group who had a greater benefit from intensive blood pressure-lowering treatment. In contrast, the team found that patients younger than age 74 who had a UACR less than 34 and no history of cardiovascular disease may do equally as well with less intensive treatment.

"We feel that our findings have major clinical implications, since in addition to its predictive effects, the model generated here is simple and easy to implement in clinical practice without additional lab tests or computational tools," said Dr. Xie, who is also an Associate Professor of Clinical Sciences and Bioinformatics. "We hope that clinicians can someday use this algorithm to identify which patients should receive standard versus intensive treatment, and we hope to design a prospective clinical trial to further validate this algorithm."

###

Other UT Southwestern researchers involved in the study included Dr. Sandeep R. Das, Associate Professor of Internal Medicine; Dr. Rebecca Vigen, Assistant Professor of Internal Medicine; Dr. Tao Wang, Assistant Professor of Clinical Sciences and in the Center for the Genetics of Host Defense; Dr. Xin Luo, a data scientist; Dr. Rong Lu, a biostatistical consultant; Dr. Xiaowei Zhan, Assistant Professor of Clinical Sciences and in the Center for the Genetics of Host Defense; and Dr. Guanghua Xiao, Associate Professor of Clinical Sciences and Bioinformatics. Lead authors are Shidan Wang, a graduate student researcher, and Dr. Rohan Khera, a cardiology research fellow.

The study received support from the National Institutes of Health.

Media Contact

Deborah Wormser
[email protected]
@UTSWNews

http://www.swmed.edu

Original Source

https://www.utsouthwestern.edu/newsroom/articles/year-2018/hypertension-algorithm.html

Share12Tweet8Share2ShareShareShare2

Related Posts

Unraveling Neurodegeneration: The Gut-Brain-Immune Connection Explored

October 28, 2025
Post-COVID Nasal Cells Altered by TNFα, TGFβ

Post-COVID Nasal Cells Altered by TNFα, TGFβ

October 28, 2025

BU Researcher Awarded Grant to Advance Resident Health in Nursing Homes

October 28, 2025

TEDDY Study Reveals Variable Microbiome Prediction Accuracy

October 28, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1288 shares
    Share 514 Tweet 322
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    310 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    198 shares
    Share 79 Tweet 50
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    135 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Graphene Anodes and LFP Cathodes Transform Lithium-Ion Batteries

First Molecular Study of Cryptosporidium, Giardia in Bangladeshi Pigs

KOA-QLSTM Enhances Lithium-Ion Battery Health Assessment

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.