• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, November 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Alaska’s rusting waters: Pristine rivers and streams turning orange

Bioengineer by Bioengineer
May 21, 2024
in Chemistry
Reading Time: 4 mins read
0
Rusty Kutuk River, Arctic NP
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Dozens of Alaska’s most remote streams and rivers are turning from a crystal clear blue into a cloudy orange, and the staining could be the result of minerals exposed by thawing permafrost, new research in the Nature journal Communications: Earth and Environment finds.

Rusty Kutuk River, Arctic NP

Credit: Ken Hill / National Park Service

Dozens of Alaska’s most remote streams and rivers are turning from a crystal clear blue into a cloudy orange, and the staining could be the result of minerals exposed by thawing permafrost, new research in the Nature journal Communications: Earth and Environment finds.

For the first time, a team of researchers from the National Park Service, U.S. Geological Survey, the University of California, Davis, and other institutions have documented and sampled some of the impaired waters, pinpointing 75 locations across a Texas-sized area of northern Alaska’s Brooks Range.

These degraded rivers and streams could have significant implications for drinking water and fisheries in Arctic watersheds as the climate changes, the researchers said.

“The more we flew around, we started noticing more and more orange rivers and streams,” said lead author Jon O’Donnell, an ecologist for the NPS’ Arctic Inventory and Monitoring Network. “There are certain sites that look almost like a milky orange juice.

Those orange streams can be problematic both in terms of being toxic but might also prevent migration of fish to spawning areas.”

Visible from space

O’Donnell first noticed an issue when he visited a river in 2018 that appeared rusty despite having been clear the year prior. He began asking around and compiling locations while grabbing water samples when possible in the remote region, where helicopters are generally the only way to access the rivers and streams.

“The stained rivers are so big we can see them from space,” said Brett Poulin, an assistant professor of environmental toxicology at UC Davis who was a principal investigator in the research. “These have to be stained a lot to pick them up from space.”

Poulin, whose expertise is in water chemistry, thought the staining looked similar to what happens with acid mine drainage, except no mines are near any of the impaired rivers, including along the famed Salmon River and other federally protected waters.

One hypothesis is that the permafrost, which is essentially frozen ground, stores minerals and as the climate warmed, the metal ores that were once locked up were exposed to water and oxygen, resulting in the release of acid and metals.

“Chemistry tells us minerals are weathering,” Poulin said. “Understanding what’s in the water is a fingerprint as to what occurred.”

The impacted rivers are on federal lands managed by Bureau of Land Management, Fish and Wildlife Service and NPS, including Gates of the Arctic and Kobuk Valley national parks. 

Poulin and Ph.D. candidate Taylor Evinger analyzed initial samples, then collected their own on a trip last August, while others took samples in June and July. This year, they will take three trips during the summer to collect additional samples.

Acidic water releasing metals

Some samples from the impaired waters have a pH of 2.3 compared to the average pH of 8 for these rivers. This means the sulfide minerals are weathering, resulting in highly acidic and corrosive conditions that release additional metals. Elevated or high levels of iron, zinc, nickel, copper and cadmium have been measured.

“We see a lot of different types of metals in these waters,” Evinger said. “One of the most dominant metals is iron. That’s what is causing the color change.”

While O’Donnell first noticed a change in 2018, satellite images have turned up stained waters dating back to 2008.

“The issue is slowly propagating from small headwaters into bigger rivers over time,” he said. “When emergent issues or threats come about, we need to be able to understand them.”

Understanding risk

The researchers are in the second year of a three-year grant aimed at understanding what is happening in the water, modeling what other areas may be at risk and assessing implications for drinking water and fishing stocks.

The problem is growing and affecting habitat, water quality and other ecological systems, turning healthy areas into degraded habitats with fewer fish and invertebrates. If rural communities rely on these rivers for drinking water, they could require treatment eventually, and the fishing stocks that feed local residents could be affected.

“There’s a lot of implications,” O’Donnell said. “As the climate continues to warm, we would expect permafrost to continue to thaw and so wherever there are these types of minerals, there’s potential for streams to be turning orange and becoming degraded in terms of water quality.”

More work is needed to better understand the problem and whether rivers and streams can rebound, perhaps after cold weather promotes permafrost recovery.

“I think there will be a lot more detailed work to follow up to address some of the uncertainties that we currently have,” O’Donnell said.

Scientists from Alaska Pacific University, Colorado State University, University of Alaska Anchorage and UC Riverside also contributed to the research.

The research was funded by U.S. Geological Survey–NPS Water Quality Partnership program, the U.S. Geological Survey Changing Arctic Ecosystem Initiative and the NPS Arctic Inventory and Monitoring Program.

 



Journal

Communications Earth & Environment

DOI

10.1038/s43247-024-01446-z

Method of Research

Observational study

Article Title

Metal mobilization from thawing permafrost to aquatic ecosystems is driving rusting of Arctic streams

Article Publication Date

20-May-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

Engineering Ultra-Stable Proteins via Hydrogen Bonding

Engineering Ultra-Stable Proteins via Hydrogen Bonding

November 19, 2025
Designing DNA for Controlled Charge Transport

Designing DNA for Controlled Charge Transport

November 18, 2025

Chemoselective Electrolysis Drives Precise Arene Hydroalkylation

November 17, 2025

LHAASO Sheds Light on the Origin of the Cosmic Ray “Knee” Phenomenon

November 16, 2025

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    202 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    118 shares
    Share 47 Tweet 30
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    211 shares
    Share 84 Tweet 53
  • Neurological Impacts of COVID and MIS-C in Children

    90 shares
    Share 36 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

EGFR Boosts YAP Signaling, Fostering Diabetic Retinal Fibrosis

HCP5 Non-Coding RNA Promotes Ovarian Cancer Progression

Mapping S-Nitrosylated Proteins with SNOTRAP and Mass Spectrometry

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.