• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Airline industry could fly thousands of miles on biofuel from a new…

Bioengineer by Bioengineer
January 24, 2018
in Biology, Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Claire Benjamin/University of Illinois

A Boeing 747 burns one gallon of jet fuel each second. A recent analysis from researchers at the University of Illinois estimate that this aircraft could fly for 10 hours on bio-jet fuel produced on 54 acres of specially engineered sugarcane.

Plants Engineered to Replace Oil in Sugarcane and Sweet Sorghum (PETROSS), funded by the Advanced Research Projects Agency – Energy (ARPA-E), has developed sugarcane that produces oil, called lipidcane, that can be converted into biodiesel or jet fuel in place of sugar that is currently used for ethanol production. With 20% oil – the theoretical limit – all of the sugar in the plant would be replaced by oil.

"Oil-to-Jet is one of the direct and efficient routes to convert bio-based feedstocks to jet fuel," said Vijay Singh, Director of the Integrated Bioprocessing Research Laboratory. "Reducing the feedstock cost is critical to improving process economics of producing bio-jet fuel. Lipidcane allows us to reduce feedstock cost."

This research analyzed the economic viability of crops with different levels of oil. Lipidcane with 5% oil produces four times more jet fuel (1,577 liters, or 416 gallons) per hectare than soybeans. Sugarcane with 20% oil produces more than 15 times more jet fuel (6,307 liters, or 1,666 gallons) per hectare than soybeans.

"PETROSS sugarcane is also being engineered to be more cold tolerant, potentially enabling it to be grown on an estimated 23 million acres of marginal land in the Southeastern U.S.," said PETROSS Director Stephen Long, Gutgsell Endowed Professor of Plant Biology and Crop Sciences at the Carl R. Woese Institute for Genomic Biology at the University of Illinois. "If all of this acreage was used to produce renewable jet fuel from lipid-cane, it could replace about 65% of national jet fuel consumption."

"We estimate that this biofuel would cost the airline industry $5.31/gallon, which is less than most of the reported prices of renewable jet fuel produced from other oil crops or algae," said Deepak Kumar, a postdoctoral researcher at Illinois, who led the analysis.

This crop also produces profitable co-products: A hydrocarbon fuel is produced along with bio-jet fuel or biodiesel that can be used to produce various bioproducts. The remaining sugar (for plants with less than 20% oil) could be sold or used to produce ethanol. In addition, biorefineries could use lipidcane bagasse to produce steam and electricity to become self-sustainable for their energy needs and provide surplus electricity, providing environmental benefits by displacing electricity produced with fossil fuels.

PETROSS (Plants Engineered to Replace Oil in Sugarcane and Sorghum) is a research project transforming sugarcane and sweet sorghum to naturally produce large amounts of oil, a sustainable source of biofuel. PETROSS is supported by the Advanced Research Projects Agency-Energy (ARPA-E), which funds initial research for high-impact energy technologies to show proof of concept before private-sector investment.

The paper "Biorefinery for combined production of jet fuel and ethanol from lipid-producing sugarcane: a techno-economic evaluation" is published by Global Change Biology Bioenergy (10.1111/gcbb.12478).

###

Media Contact

Claire Benjamin
[email protected]
217-244-0941
@IGBIllinois

http://www.igb.uiuc.edu

Original Source

http://petross.illinois.edu/news/airline-industry-could-fly-thousands-of-miles-on-biofuel-from-a-new-promisi

Share12Tweet7Share2ShareShareShare1

Related Posts

Impact of Electrode Material on Radish Germination

Impact of Electrode Material on Radish Germination

September 14, 2025
blank

Maize Fungal Diseases: Pathogen Diversity in Ethiopia

September 14, 2025

Unraveling Gut Microbiota’s Role in Breast Cancer

September 14, 2025

Estimating Rice Canopy LAI Non-Destructively Across Varieties

September 14, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    153 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    65 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Impact of Electrode Material on Radish Germination

Maize Fungal Diseases: Pathogen Diversity in Ethiopia

Unraveling Gut Microbiota’s Role in Breast Cancer

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.