• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, October 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Air pollution fell sharply during lockdown

Bioengineer by Bioengineer
March 4, 2021
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Traffic significantly underestimated as cause of nitrogen oxide pollution in cities

IMAGE

Credit: University of Innsbruck

The far-reaching mobility restrictions at the beginning of the Corona pandemic in March 2020 created a unique situation for atmospheric sciences: “During the 2020 lockdown, we were able to directly investigate the actual effects of drastic traffic restrictions on the distribution of air pollutants and on the emission of climate gases,” says Innsbruck atmospheric scientist Thomas Karl. With his team, he has now published a detailed analysis of air quality during the first lockdown in the city of Innsbruck, Austria, in the journal Atmospheric Chemistry and Physics. “We find significantly greater decreases of air pollutants than of carbon dioxide, for example,” the researcher says, summarizing the results. In the past year, some studies showed contradicting results because the influence of weather was often not factored in, on the one hand, or a detailed comparison with emission data was not possible, on the other hand. Based on a unique measurement strategy in combination with detailed source emission data, the Innsbruck researchers can now provide a reliable analysis. Their results confirm assumptions inferred from earlier work: “The decrease in nitrogen oxides and other pollutants due to reduced traffic is stronger than often assumed,” emphasizes Thomas Karl. “We find that the proportion of nitrogen oxides emitted from traffic is higher than often assumed, while the proportion from domestic, commercial and public energy consumption is lower.” The European energy transition, with the switch to cleaner combustion in the residential and industrial sectors, is having a positive effect on air quality and has been underestimated in some cases. Atmospheric researcher Thomas Karl summarizes “We project that in many European inner cities, comparable to Innsbruck, more than 90 percent of nitrogen oxide emissions are caused by traffic”.

Emission models need to be adjusted

In urban regions across Europe, the air quality thresholds for nitrogen oxides and other pollutants are regularly exceeded. It is not always easy to determine which polluters are responsible for how much emission. Until recently, the key method for quantifying emissions has relied on exhaust emission tests on test stands that were then extrapolated in a model. However, the actual amount of air pollutants emitted by a vehicle or a heating appliance in everyday use can depend on many factors. The diesel scandal has made it clear how inconclusive measurements on the test stand can be, when interpreting their impact on the environment. Assessment of air management by environmental and health authorities heavily depends on atmospheric models that rely on accurate emission data. Until now, it was very difficult to assess actual air pollutants emitted in a specific region and constraining their emissions. The team led by Thomas Karl from the Department of Atmospheric and Cryospheric Sciences at the University of Innsbruck closes this gap with the so-called eddy covariance method, which measures air composition and wind flow in detail and thus allows conclusions to be drawn about the air pollutant emission strengths. With the Innsbruck Atmospheric Observatory (IAO) set up at the University of Innsbruck, the air over Innsbruck is now being continuously studied.

###

The current study was financed by the Austrian Science Fund FWF.

Media Contact
Thomas Karl
[email protected]

Related Journal Article

http://dx.doi.org/10.5194/acp-21-3091-2021

Tags: Atmospheric ChemistryAtmospheric SciencePollution/Remediation
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

New Framework Uncovers Differential Chromatin Interactions

October 11, 2025
Sex Differences in Pig Blood Gene Expression

Sex Differences in Pig Blood Gene Expression

October 11, 2025

RLCKs Phosphorylate RopGEFs to Regulate Arabidopsis Growth

October 10, 2025

Discovering New Proteomic Biomarkers for Hypertension

October 10, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1208 shares
    Share 482 Tweet 302
  • New Study Reveals the Science Behind Exercise and Weight Loss

    102 shares
    Share 41 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    97 shares
    Share 39 Tweet 24
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    86 shares
    Share 34 Tweet 22
/div>

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Parkinson’s Disease: A Fatty Acid Pathology?

Global Cardiovascular-Liver-Metabolic Syndemic: Trends and Challenges

Distinct Brain Connectivity in Childhood Epilepsy Revealed

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.