• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Air pollution casts shadow over solar energy production

Bioengineer by Bioengineer
June 26, 2017
in Biology
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Michael Bergin, Duke University

DURHAM, N.C. — Global solar energy production is taking a major hit due to air pollution and dust.

According to a new study, airborne particles and their accumulation on solar cells are cutting energy output by more than 25 percent in certain parts of the world. The regions hardest hit are also those investing the most in solar energy installations: China, India and the Arabian Peninsula.

The study appears online June 23 in Environmental Science & Technology Letters.

"My colleagues in India were showing off some of their rooftop solar installations, and I was blown away by how dirty the panels were," said Michael Bergin, professor of civil and environmental engineering at Duke University and lead author of the study. "I thought the dirt had to affect their efficiencies, but there weren't any studies out there estimating the losses. So we put together a comprehensive model to do just that."

With colleagues at the Indian Institute of Technology-Gandhinagar and the University of Wisconsin at Madison, Bergin measured the decrease in solar energy gathered by the IITGN's solar panels as they became dirtier over time. The data showed a 50-percent jump in efficiency each time the panels were cleaned after being left alone for several weeks.

The researchers also sampled the grime to analyze its composition, revealing that 92 percent was dust while the remaining fraction was composed of carbon and ion pollutants from human activity. While this may sound like a small amount, light is blocked more efficiently by smaller man-made particles than by natural dust. As a result, the human contributions to energy loss are much greater than those from dust, making the two sources roughly equal antagonists in this case.

"The manmade particles are also small and sticky, making them much more difficult to clean off," said Bergin. "You might think you could just clean the solar panels more often, but the more you clean them, the higher your risk of damaging them."

Having previously analyzed pollutants discoloring India's Taj Mahal, Bergin already had a good idea of how these different particles react to sunlight. Using his earlier work as a base, he created an equation that accurately estimates the amount of sunlight blocked by different compositions of solar panel dust and pollution buildup.

But grimy buildup on solar panels isn't the only thing blocking sunlight–the ambient particles in the air also have a screening effect.

For that half of the sun-blocking equation, Bergin turned to Drew Shindell, professor of climate sciences at Duke and an expert in using the NASA GISS Global Climate Model.

Because the climate model already accounts for the amount of the sun's energy blocked by different types of airborne particles, it was not a stretch to estimate the particles' effects on solar energy. The NASA model also estimates the amount of particulate matter deposited on surfaces worldwide, providing a basis for Bergin's equation to calculate how much sunlight would be blocked by accumulated dust and pollution.

The resulting calculations estimate the total loss of solar energy production in every part of the world. While the United States has relatively little migratory dust, more arid regions such as the Arabian Peninsula, Northern India and Eastern China are looking at heavy losses — 17 to 25 percent or more, assuming monthly cleanings. If cleanings take place every two months, those numbers jump to 25 or 35 percent.

There are, of course, multiple variables that affect solar power production both on a local and regional level. For example, a large construction zone can cause a swift buildup of dust on a nearby solar array.

The Arabian Peninsula loses much more solar power to dust than it does manmade pollutants, Bergin said. But the reverse is true for regions of China, and regions of India are not far behind.

"China is already looking at tens of billions of dollars being lost each year, with more than 80 percent of that coming from losses due to pollution," said Bergin. "With the explosion of renewables taking place in China and their recent commitment to expanding their solar power capacity, that number is only going to go up."

"We always knew these pollutants were bad for human health and climate change, but now we've shown how bad they are for solar energy as well," continued Bergin. "It's yet another reason for policymakers worldwide to adopt emissions controls."

This work was supported by the US Agency for International Development and the Office of the Vice Provost for Research at Duke University.

###

"Large reductions in solar energy production due to dust and particulate air pollution," Mike Bergin, Chinmay Ghoroi, Deepa Dixit, Jamie Schauer, Drew Shindell. Environmental Science & Technology Letters, June 26, 2017. DOI: 10.1021/acs.estlett.7b00197

Media Contact

Ken Kingery
[email protected]
919-660-8414
@DukeU

http://www.duke.edu

Original Source

http://pratt.duke.edu/about/news/solar-pollution http://dx.doi.org/10.1021/acs.estlett.7b00197

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

ORC2’s Role in Human Gene Expression Reveals Surprising Extent and Impact

ORC2’s Role in Human Gene Expression Reveals Surprising Extent and Impact

August 14, 2025
Advances in Synthetic Telomerase RNA and Polygenic Score Development Unlock New Insights into Telomere Biology

Advances in Synthetic Telomerase RNA and Polygenic Score Development Unlock New Insights into Telomere Biology

August 14, 2025

Streamlined Genomes, Maximum Efficiency: How Symbiotic Bacteria with Minimal DNA Deliver Optimal Support to Their Hosts

August 14, 2025

Unveiling Biomarkers and Pathogenesis of Myocardial Infarction Linked to Ankylosing Spondylitis Through Systems Biology

August 14, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    58 shares
    Share 23 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Boosting Vaccine Effectiveness in Older Adults

Rare Ovarian Tumor Masquerading as Pregnancy Successfully Treated in Uncommon Case

Worcester Polytechnic Institute Chosen as Principal Partner in National Initiative to Enhance Cybersecurity and AI Training for U.S. Automotive Innovation

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.