• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

AI reduces computational time required to study fate of molecules exposed to light

Bioengineer by Bioengineer
December 1, 2020
in Science News
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Sylvia Germes

Light-induced processes are critical in transformative technologies such as solar energy harvesting, as well as in photomedicine and photoresponsive materials. Theoretical studies of the dynamics of photoinduced processes require numerous electronic structure calculations, which are computationally expensive. Scientists from the University of Groningen developed machine learning-based algorithms, which reduce these computations significantly. The Open Source software package that they developed, PySurf, was presented in a paper in the Journal of Chemical Theory and Computation on 24 November.

How do molecules behave when they are exposed to light? Knowledge of this process is not only central to crucial processes in nature, such as photosynthesis and vitamin D production, but it is also critical for the rational design of new molecules with specific photoresponsive properties.

Machine learning

Yet, despite great advances in hardware and computational methods, calculations of the interaction between light and molecules is still a challenge, explains Shirin Faraji, Associate Professor in Theoretical Chemistry, the lead author of the paper. ‘The high-level electronic structure calculations are already very costly for medium-sized molecules, typical chromophores have around thirty heavy atoms.’ Including the influence of the environment at the quantum mechanical level on such a system is practically impossible.

‘Current software searches the entire conformational space, but we use machine learning to exclude parts of this conformational space search, making it a very smart search,’ Faraji explains. ‘Our software, therefore, requires several orders of magnitude less computational time than existing direct dynamics software.’ In the paper, the developers report the photodynamics of two benchmark molecules, SO2 and pyrazine, and show that their results are comparable to those obtained using simulations that are based entirely on quantum dynamics.

Quantum chemistry

Furthermore, the software package was developed from scratch and is easy to adapt for specific purposes, for example by using plug-in and workflow engines. Faraji: ‘A PhD student could easily dig into the code and develop a specific algorithm, for example, a new neural-network-based algorithm.’

Faraji contributed code to several software packages, most notably Q-Chem, one of the world’s leading quantum chemistry software programs, and is currently a member of the Q-Chem Board of Directors. The new PySurf package will interface with Q-Chem, but also with other electronic structure software. PySurf is Open Source, which means that it is available as a free download together with the manual, and Faraji’s team will provide support for users.

First release

The PySurf software is the result of a project funded by a personal grant to Faraji from the Dutch Research Council (NWO) Vidi programme. Faraji: ‘We are only a year and a half into this five-year project. So, the current version is just the first release. We continue to work on the program to optimize it and to create a user-friendly interface.’

###

Reference: Maximilian F. S. J. Menger, Johannes Ehrmaier, and Shirin Faraji: PySurf: A Framework for Database Accelerated Direct Dynamics. J. Chem. Theory Comput. online 24 November 2020.

Media Contact
Rene Fransen
[email protected]

Original Source

https://www.rug.nl/sciencelinx/nieuws/2020/12/ai-reduces-computational-time-required-to-study-fate-of-molecules-exposed-to-light

Related Journal Article

http://dx.doi.org/10.1021/acs.jctc.0c00825

Tags: Algorithms/ModelsCalculations/Problem-SolvingChemistry/Physics/Materials SciencesComputer ScienceMolecular PhysicsOpticsResearch/Development
Share12Tweet8Share2ShareShareShare2

Related Posts

Skeletal Fracture Patterns in Fatal Motorcycle Crashes

November 5, 2025
blank

Quantum-Boosted Transfer Learning for Underwater Species Classification

November 5, 2025

Mitigating the Risk of Hazardous Short Circuits in Lithium Batteries

November 5, 2025

Unveiling Europe’s Key Players in Regenerative Agriculture

November 5, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1298 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Skeletal Fracture Patterns in Fatal Motorcycle Crashes

Quantum-Boosted Transfer Learning for Underwater Species Classification

Mitigating the Risk of Hazardous Short Circuits in Lithium Batteries

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.