• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, August 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

AI reduces computational time required to study fate of molecules exposed to light

Bioengineer by Bioengineer
December 1, 2020
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Sylvia Germes

Light-induced processes are critical in transformative technologies such as solar energy harvesting, as well as in photomedicine and photoresponsive materials. Theoretical studies of the dynamics of photoinduced processes require numerous electronic structure calculations, which are computationally expensive. Scientists from the University of Groningen developed machine learning-based algorithms, which reduce these computations significantly. The Open Source software package that they developed, PySurf, was presented in a paper in the Journal of Chemical Theory and Computation on 24 November.

How do molecules behave when they are exposed to light? Knowledge of this process is not only central to crucial processes in nature, such as photosynthesis and vitamin D production, but it is also critical for the rational design of new molecules with specific photoresponsive properties.

Machine learning

Yet, despite great advances in hardware and computational methods, calculations of the interaction between light and molecules is still a challenge, explains Shirin Faraji, Associate Professor in Theoretical Chemistry, the lead author of the paper. ‘The high-level electronic structure calculations are already very costly for medium-sized molecules, typical chromophores have around thirty heavy atoms.’ Including the influence of the environment at the quantum mechanical level on such a system is practically impossible.

‘Current software searches the entire conformational space, but we use machine learning to exclude parts of this conformational space search, making it a very smart search,’ Faraji explains. ‘Our software, therefore, requires several orders of magnitude less computational time than existing direct dynamics software.’ In the paper, the developers report the photodynamics of two benchmark molecules, SO2 and pyrazine, and show that their results are comparable to those obtained using simulations that are based entirely on quantum dynamics.

Quantum chemistry

Furthermore, the software package was developed from scratch and is easy to adapt for specific purposes, for example by using plug-in and workflow engines. Faraji: ‘A PhD student could easily dig into the code and develop a specific algorithm, for example, a new neural-network-based algorithm.’

Faraji contributed code to several software packages, most notably Q-Chem, one of the world’s leading quantum chemistry software programs, and is currently a member of the Q-Chem Board of Directors. The new PySurf package will interface with Q-Chem, but also with other electronic structure software. PySurf is Open Source, which means that it is available as a free download together with the manual, and Faraji’s team will provide support for users.

First release

The PySurf software is the result of a project funded by a personal grant to Faraji from the Dutch Research Council (NWO) Vidi programme. Faraji: ‘We are only a year and a half into this five-year project. So, the current version is just the first release. We continue to work on the program to optimize it and to create a user-friendly interface.’

###

Reference: Maximilian F. S. J. Menger, Johannes Ehrmaier, and Shirin Faraji: PySurf: A Framework for Database Accelerated Direct Dynamics. J. Chem. Theory Comput. online 24 November 2020.

Media Contact
Rene Fransen
[email protected]

Original Source

https://www.rug.nl/sciencelinx/nieuws/2020/12/ai-reduces-computational-time-required-to-study-fate-of-molecules-exposed-to-light

Related Journal Article

http://dx.doi.org/10.1021/acs.jctc.0c00825

Tags: Algorithms/ModelsCalculations/Problem-SolvingChemistry/Physics/Materials SciencesComputer ScienceMolecular PhysicsOpticsResearch/Development
Share12Tweet8Share2ShareShareShare2

Related Posts

Metabolic Messenger: Unveiling Growth Differentiation Factor 15

Metabolic Messenger: Unveiling Growth Differentiation Factor 15

August 18, 2025
blank

4D Fetal Echocardiography: Insights on Brachiocephalic Vein Anomalies

August 18, 2025

Blocking c-Abl Halts Glioma Cell Growth

August 18, 2025

MoS2/NC Composite: A Breakthrough Lithium Battery Anode

August 18, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    80 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Metabolic Messenger: Unveiling Growth Differentiation Factor 15

4D Fetal Echocardiography: Insights on Brachiocephalic Vein Anomalies

Blocking c-Abl Halts Glioma Cell Growth

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.