• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 30, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

AI-powered study explores under-studied female evolution

by
July 1, 2024
in Biology
Reading Time: 5 mins read
0
Haliphron birdwing butterflies
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Pioneering AI-powered research on butterflies has probed the under-studied evolution of females and adds to a debate between the founding fathers of evolution.

The University of Essex study – published in Communications Biology – explores a controversy between Victorian scientists Charles Darwin and Alfred Russel Wallace.

Darwin thought males had more variation, as females often chose mates based on male appearance.

Whereas Wallace thought natural selection across sexes was the biggest factor in difference.

For over a century, scientists have mostly studied males because their differences are more obvious, while females, with more subtle evolutionary changes, had been less studied.

By using high-tech machine learning Dr Jennifer Hoyal Cuthill examined more than 16,000 male and female birdwing butterflies, with collaborators from the Natural History Museum and AI research institute Cross Labs, Cross Compass.

This is the first time the visual differences between sexes have been explored across the species, which live in Southeast Asia and Australasia.

Birdwing butterflies were chosen for this study because of their spectacular wing colour patterns and differences between males and females.

Dr Hoyal Cuthill, from the School of Life Sciences, said: “This is an exciting time, when machine learning is enabling new, large-scale tests of longstanding questions in evolutionary science.

“For the first time we are able to measure the visible extents of evolution to test how much variation is present in different biological groups and among both males and females.

“Machine learning is giving us new information on the evolutionary processes which generate and maintain biodiversity, including in historically neglected groups.”

The study looked at photographs of butterflies from the Natural History Museum collections, which show a range of traits, like wing shapes, colours, and patterns, across several species.

It found that while males often have more distinct shapes and patterns, both males and females contribute to the overall diversity.

The research showed evolutionary patterns predicted by both Darwin and Wallace were found in the butterflies.

Showing that both males and females contribute to diversity among species.

The males showed more variation in appearance, which fits with Darwin’s idea that females choose mates based on these traits.

However, the deep learning also found subtle variation in females, matching Wallace’s predictions about natural selection allowing diversity in female phenotypes.

Dr Hoyal Cuthill said: “Birdwings have been described as among the most beautiful butterflies in the world. This study gives us new insights into the evolution of their remarkable but endangered diversity.

“In this case study of birdwing butterfly photographs, it is sex that appears to have driven the greatest evolutionary change, including extreme male shapes, colours and patterns.

“However, within the group of birdwing butterflies, we found contrasting examples where female birdwing butterflies are more diverse in visible phenotype than males, and vice versa.

“High visible diversity among male butterflies supports the real-word importance of sexual selection from female mate choice on male variation, as originally suggested by Darwin.

“Cases where female butterflies are more visibly diverse than the males of their species, support an additional, important role for naturally selected female variation in inter-species diversity, as suggested by Wallace.

“Large-scale studies of evolution using machine learning offer new opportunities to resolve debates that have been outstanding since the founding of evolutionary science.”

Haliphron birdwing butterflies

Credit: Natural History Museum. 2024. Birdwing butterflies (from Collection specimens). Licensed under CC-BY-4.0.

Pioneering AI-powered research on butterflies has probed the under-studied evolution of females and adds to a debate between the founding fathers of evolution.

The University of Essex study – published in Communications Biology – explores a controversy between Victorian scientists Charles Darwin and Alfred Russel Wallace.

Darwin thought males had more variation, as females often chose mates based on male appearance.

Whereas Wallace thought natural selection across sexes was the biggest factor in difference.

For over a century, scientists have mostly studied males because their differences are more obvious, while females, with more subtle evolutionary changes, had been less studied.

By using high-tech machine learning Dr Jennifer Hoyal Cuthill examined more than 16,000 male and female birdwing butterflies, with collaborators from the Natural History Museum and AI research institute Cross Labs, Cross Compass.

This is the first time the visual differences between sexes have been explored across the species, which live in Southeast Asia and Australasia.

Birdwing butterflies were chosen for this study because of their spectacular wing colour patterns and differences between males and females.

Dr Hoyal Cuthill, from the School of Life Sciences, said: “This is an exciting time, when machine learning is enabling new, large-scale tests of longstanding questions in evolutionary science.

“For the first time we are able to measure the visible extents of evolution to test how much variation is present in different biological groups and among both males and females.

“Machine learning is giving us new information on the evolutionary processes which generate and maintain biodiversity, including in historically neglected groups.”

The study looked at photographs of butterflies from the Natural History Museum collections, which show a range of traits, like wing shapes, colours, and patterns, across several species.

It found that while males often have more distinct shapes and patterns, both males and females contribute to the overall diversity.

The research showed evolutionary patterns predicted by both Darwin and Wallace were found in the butterflies.

Showing that both males and females contribute to diversity among species.

The males showed more variation in appearance, which fits with Darwin’s idea that females choose mates based on these traits.

However, the deep learning also found subtle variation in females, matching Wallace’s predictions about natural selection allowing diversity in female phenotypes.

Dr Hoyal Cuthill said: “Birdwings have been described as among the most beautiful butterflies in the world. This study gives us new insights into the evolution of their remarkable but endangered diversity.

“In this case study of birdwing butterfly photographs, it is sex that appears to have driven the greatest evolutionary change, including extreme male shapes, colours and patterns.

“However, within the group of birdwing butterflies, we found contrasting examples where female birdwing butterflies are more diverse in visible phenotype than males, and vice versa.

“High visible diversity among male butterflies supports the real-word importance of sexual selection from female mate choice on male variation, as originally suggested by Darwin.

“Cases where female butterflies are more visibly diverse than the males of their species, support an additional, important role for naturally selected female variation in inter-species diversity, as suggested by Wallace.

“Large-scale studies of evolution using machine learning offer new opportunities to resolve debates that have been outstanding since the founding of evolutionary science.”



Journal

Communications Biology

DOI

10.1038/s42003-024-06376-2

Method of Research

Imaging analysis

Subject of Research

Animals

Article Title

Male and female contributions to diversity among birdwing butterfly images

Article Publication Date

1-Jul-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Plant Flavonoids Disrupt Pseudomonas Aeruginosa Biofilms

October 30, 2025
blank

Genomic Insights Unveil Unique Traits in Mycorrhizal Fungus

October 30, 2025

Scientists Discover Why Malaria Parasites Contain Rapidly Spinning Iron Crystals

October 29, 2025

Study of Greater Yellowstone Ecosystem Reveals How Large Mammals Respond to Heat

October 29, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1290 shares
    Share 515 Tweet 322
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    311 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    200 shares
    Share 80 Tweet 50
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    136 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Optimizing Ambulance Routes for Better Emergency Response

Telemedicine Adoption Drivers Among China’s Older Adults

Hexaploid Oat: Pangenome and Pantranscriptome Unveiled

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.