• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

AI plots sustainable materials

Bioengineer by Bioengineer
November 23, 2020
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: © 2020 KAUST; Xavier Pita

Machine learning could teach us how to make the manufacturing of materials cleaner and more sustainable by taking a holistic view to identify the greenest production method, suggest KAUST researchers.

The quest for sustainability means that scientists worldwide are developing advanced materials to help address issues, including carbon capture, water desalination and energy storage, says Rifan Hardian, a postdoc in Gyorgy Szekely’s lab. “Although these materials show promising performance, the materials themselves are often produced in unsustainable ways–using harsh conditions, toxic solvents and energy-intensive processes that generate excessive waste–potentially creating more environmental problems than they solve,” Hardian says.

In collaboration with Xiangliang Zhang and his team, Szekely and Hardian have been investigating a more sustainable approach to materials development, called design of experiments (DoE). “Unlike conventional approaches to materials optimization, which vary one factor at a time, DoE is a systematic approach that allows multiple factors to be varied simultaneously,” Hardian says.

DoE theoretically allows variables–such as reactant and solvent choice, reaction time and reaction temperature–to be optimized all at once. The procedure cuts the number of experiments conducted and also potentially identifies the greenest possible way to make a material. However, it is challenging to optimize each variable to identify the best reaction protocol from such sparse experimental data. “This is where machine learning comes in,” Hardian says.

Machine learning is a form of artificial intelligence that can learn patterns from a limited number of data points to fill in the blanks in the data. “This way, one can view the entire experimental space and pick the one reaction condition that best fits the desired results,” Hardian says.

The team combined DoE and machine learning to identify a sustainable method for making a popular metal organic framework (MOF) material called ZIF-8. “ZIF-8 has great potential in applications, such as gas separation, catalysis, heavy metal removal and environmental remediation,” Hardian says. The team optimized 10 variables in the electrochemical synthesis of ZIF-8, identifying a high-yielding process that used water as a solvent and generated minimal waste. “Thanks to machine learning, we developed a holistic view of the variables’ interactions and identified many unexpected correlations that could have been missed if we had followed a conventional approach,” Hardian says.

The next milestone will be to apply DoE and machine learning to large-scale materials production, Szekely says. “Ultimately, our aim is to turn the futuristic vision of an autonomous laboratory system, which can continuously run and self-optimize reaction conditions, into a reality,” he says.

###

Media Contact
Michael Cusack
[email protected]

Original Source

https://discovery.kaust.edu.sa/en/article/1064/ai-plots-sustainable-materials

Related Journal Article

http://dx.doi.org/10.1039/D0GC02956D

Tags: Algorithms/ModelsBiomedical/Environmental/Chemical EngineeringComputer ScienceRobotry/Artificial IntelligenceTechnology/Engineering/Computer Science
Share14Tweet9Share2ShareShareShare2

Related Posts

blank

Author Correction: New Analysis Clarifies Parkinson’s Trial Benefits

August 13, 2025
Optimizing Fuel Cell Parameters with AI Techniques

Optimizing Fuel Cell Parameters with AI Techniques

August 13, 2025

DKMS John Hansen Research Grant 2026 Awards Nearly €1 Million to Advance Innovative Blood Cancer Therapies

August 13, 2025

Twisted Bilayer MOFs Unlock Tailored Moiré Patterns, Driving Breakthroughs in Twistronics and Quantum Materials

August 13, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    58 shares
    Share 23 Tweet 15
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Author Correction: New Analysis Clarifies Parkinson’s Trial Benefits

Optimizing Fuel Cell Parameters with AI Techniques

DKMS John Hansen Research Grant 2026 Awards Nearly €1 Million to Advance Innovative Blood Cancer Therapies

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.