• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

AI capable of outlining in a single chart information from thousands of scientific papers

Bioengineer by Bioengineer
November 12, 2018
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: NIMS

NIMS and the Toyota Technological Institute at Chicago have jointly developed a Computer-Aided Material Design (CAMaD) system capable of extracting information related to fabrication processes and material structures and properties–factors vital to material design–and organizing and visualizing the relationship between them. The use of this system enables information from thousands of scientific and technical articles to be summarized in a single chart, rationalizing and expediting material design.

The performance of a material is determined by its properties. Because a material's properties are greatly influenced by its structure and by the fabrication process that controls the structure, understanding the relationships between factors affecting material properties of interest and associated material structures and fabrication processes is vital to rationalizing and expediting the development of materials with desirable performance. Materials informatics–an information science-based approach to materials research–allows the relationships between these factors to be extracted from large amounts of data using deep learning. However, because the collection of large amounts of data on materials through experiments and database construction is labor-intensive, it had been difficult to use materials informatics to integrate process-structure-property-performance relationships into material design.

This research group has developed a system able to extract and identify relationships between factors related to processes, structures and properties vital to material design by instructing computers to read the text of scientific articles–rather than numerical data on materials–using natural language processing and weekly supervised deep learning. The material designers initially select several material properties relevant to desirable material performance. Based on these selections, the computer then extracts relevant information, determines the type and strength of relationships between material structures relevant to the desirable properties and factors related to structure-controlling fabrication processes and generates a chart to visualize these relationships. For example, if a steel designer selects "strength" and "ductility" as material properties of interest, the computer produces a chart illustrating the relationship between structural and process factors relevant to composite microstructures known to influence these two properties.

In this pioneering effort, we actively integrated natural language processing and deep learning into material design. We have publicized the AI source code developed in this study for use by others, free of charge, to promote related research.*

###

*Link to the source code: https://bitbucket.org/0024takeshi/pspp_relation

This research project was carried out by Ikumu Watanabe (Senior Researcher, RCSM, NIMS), Takuya Kadohira (Group Leader, MaDIS, NIMS) and Takeshi Onishi (Ph.D. student, Toyota Technological Institute at Chicago).

This study was published in Science and Technology of Advanced Materials on September 19, 2018.

Contacts

(Regarding this research)

Ikumu Watanabe
Senior Researcher,
High Strength Materials Group, Analysis and Evaluation Field,
Research Center for Structural Materials,
National Institute for Materials Science
TEL: +81-29-859-2118
E-Mail: [email protected] ">[email protected]

Takeshi Onishi
Ph.D. Student, Toyota Technological Institute at Chicago
Email: [email protected]">[email protected]
URL: http://0024takeshi.bitbucket.io

(For general inquiries)

Public Relations Office
National Institute for Materials Sciences
Tel: +81-29-859-2026
Fax: +81-29-859-2017
E-Mail: [email protected]">[email protected]

Media Contact

Yasufumi Nakamichi
[email protected]
81-298-592-105

http://www.nims.go.jp/eng/index.html

Original Source

http://www.nims.go.jp/eng/news/press/2018/09/201809250.html http://dx.doi.org/10.1080/14686996.2018.1500852

Share12Tweet8Share2ShareShareShare2

Related Posts

Evaluating Intermediate Care’s Effects on Healthcare Outcomes

November 4, 2025
Eco-Friendly LaVO4 Nanoparticles Boost Paracetamol Detection

Eco-Friendly LaVO4 Nanoparticles Boost Paracetamol Detection

November 4, 2025

Biodegradable Matrix Boosts Blood Vessel Growth for Stroke Recovery

November 4, 2025

Predicting Concentration and Mass Transfer in Pharma Drying

November 4, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1297 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    204 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Intermediate Care’s Effects on Healthcare Outcomes

Eco-Friendly LaVO4 Nanoparticles Boost Paracetamol Detection

Biodegradable Matrix Boosts Blood Vessel Growth for Stroke Recovery

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.