• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

AI as a physicist

Bioengineer by Bioengineer
February 7, 2024
in Chemistry
Reading Time: 5 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The development of a new theory is typically associated with the greats of physics. You might think of Isaac Newton or Albert Einstein, for example. Many Nobel Prizes have already been awarded for new theories. Researchers at Forschungszentrum Jülich have now programmed an artificial intelligence that has also mastered this feat. Their AI is able to recognize patterns in complex data sets and to formulate them in a physical theory. The development of a new theory is typically associated with the greats of physics. You might think of Isaac Newton or Albert Einstein, for example. Many Nobel Prizes have already been awarded for new theories. Researchers at Forschungszentrum Jülich have now programmed an artificial intelligence that has also mastered this feat. Their AI is able to recognize patterns in complex data sets and to formulate them in a physical theory.

AI as a Physicist

Credit: Forschungszentrum Jülich

The development of a new theory is typically associated with the greats of physics. You might think of Isaac Newton or Albert Einstein, for example. Many Nobel Prizes have already been awarded for new theories. Researchers at Forschungszentrum Jülich have now programmed an artificial intelligence that has also mastered this feat. Their AI is able to recognize patterns in complex data sets and to formulate them in a physical theory. The development of a new theory is typically associated with the greats of physics. You might think of Isaac Newton or Albert Einstein, for example. Many Nobel Prizes have already been awarded for new theories. Researchers at Forschungszentrum Jülich have now programmed an artificial intelligence that has also mastered this feat. Their AI is able to recognize patterns in complex data sets and to formulate them in a physical theory.

In the following interview, Prof. Moritz Helias from Forschungszentrum Jülich’s Institute for Advanced Simulation (IAS-6) explains what the “Physics of AI” is all about and to what extent it differs from conventional approaches.In the following interview, Prof. Moritz Helias from Forschungszentrum Jülich’s Institute for Advanced Simulation (IAS-6) explains what the “Physics of AI” is all about and to what extent it differs from conventional approaches.In the following interview, Prof. Moritz Helias from Forschungszentrum Jülich’s Institute for Advanced Simulation (IAS-6) explains what the “Physics of AI” is all about and to what extent it differs from conventional approaches.

How do physicists come up with a new theory?

You usually start with observations of the system before attempting to propose how the different system components interact with each other in order to explain the observed behaviour. New predictions are then derived from this and put to the test. A well-known example is Isaac Newton’s law of gravitation. It not only describes the gravitational force on Earth, but it can also be used to predict the movements of planets, moons, and comets – as well as the orbits of modern satellites – fairly accurately.

However, the way in which such hypothoses are reached always differs. You can start with general principles and basic equations of physics and derive the hypothesis from them, or you can choose a phenomenological approach, limiting yourself to describing observations as accurately as possible without explaining their causes. The difficulty lies in selecting a good approach from the numerous approaches possible, adapting it if necessary, and simplifying it.

What approach are you taking with AI?

In general, it involves an approach known as “physics for machine learning”. In our working group, we use methods of physics to analyse and understand the complex function of an AI.

The crucial new idea developed by Claudia Merger from our research group was to first use a neural network that learns to accurately map the observed complex behaviour to a simpler system. In other words, the AI aims to simplify all the complex interactions we observe between system components. We then use the simplified system and create an inverse mapping with the trained AI. Returning from the simplified system to the complex one, we then develop the new theory. On the way back, the complex interactions are built up piece by piece from the simplified ones. Ultimately, the approach is therefore not so different from that of a physicist, with the difference being that the way in which the interactions are assembled is now read from the parameters of the AI. This perspective on the world – explaining it from interactions between its various parts that follow certain laws – is the basis of physics, hence the term “physics of AI”.

In which applications was AI used?

We used a data set of black and white images with handwritten numbers, for example, which is often used in research when working with neural networks. As part of her doctoral thesis, Claudia Merger investigated how small substructures in the images, such as the edges of the numbers, are made up of interactions between pixels. Groups of pixels are found that tend to be brighter together and thus contribute to the shape of the edge of the number.

How high is the computational effort?

The use of AI is a trick that makes the calculations possible in the first place. You very quickly reach a very large number of possible interactions. Without using this trick, you could only look at very small systems. Nevertheless, the computational effort involved is still high, which is due to the fact that there are many possible interactions even in systems with many components. However, we can efficiently parameterize these interactions so that we can now view systems with around 1,000 interacting components, i.e. image areas with up to 1,000 pixels. In the future, much larger systems should also be possible through further optimization.

How does this approach differ from other AIs such as ChatGPT?

Many AIs aim to learn a theory of the data used to train the AI. However, the theories that the AIs learn usually cannot be interpreted. Instead, they are implicitly hidden in the parameters of the trained AI. In contrast, our approach extracts the learned theory and formulates it in the language of interactions between system components, which underlies physics. It thus belongs to the field of explainable AI, specifically the “physics of AI”, as we use the language of physics to explain what the AI has learned. We can use the language of interactions to build a bridge between the complex inner workings of AI and theories that humans can understand.



Journal

Physical Review X

DOI

10.1103/PhysRevX.13.041033

Article Title

Learning Interacting Theories from Data

Article Publication Date

20-Nov-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Innovative Patterning Technique Paves the Way for Next-Gen OLED Displays

Innovative Patterning Technique Paves the Way for Next-Gen OLED Displays

August 14, 2025
blank

Spin Alignment Boosts Dimerization in Ammonia Oxidation

August 14, 2025

Scientists Develop First ‘Microwave Brain’ on a Chip

August 14, 2025

WSU Researchers Uncover Biological Mechanism Behind Coho Salmon Die-Offs

August 14, 2025

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    58 shares
    Share 23 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Hanyang University Researchers Unveil Digital Twin Framework to Boost Sustainability and Efficiency in Modular Building Design

Innovative Patterning Technique Paves the Way for Next-Gen OLED Displays

Artificial Intelligence Drives Advances in Solid-State Battery Material Screening and Performance Assessment

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.