• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Aging | Synergism of BCL-2 family inhibitors facilitates selective elimination of senescent cells

Bioengineer by Bioengineer
September 1, 2022
in Biology
Reading Time: 4 mins read
0
Figure 1
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

BUFFALO, NY- September 1, 2022 – A new research paper was published in Aging (“Aging (Albany NY)” by Medline/PubMed, “Aging-US” by Web of Science) on the cover of Volume 14, Issue 16, entitled, “Synergism of BCL-2 family inhibitors facilitates selective elimination of senescent cells.”

Figure 1

Credit: 2022 Rysanek et al.

BUFFALO, NY- September 1, 2022 – A new research paper was published in Aging (“Aging (Albany NY)” by Medline/PubMed, “Aging-US” by Web of Science) on the cover of Volume 14, Issue 16, entitled, “Synergism of BCL-2 family inhibitors facilitates selective elimination of senescent cells.”

Cellular senescence, a complex cellular response to stress characterized by a halt of cell cycle progression, is one factor contributing to aging. Accumulation of senescent cells in tissues with advancing age participates in the pathogenesis of several human age-associated diseases. 

Specific senescent secretome, the resistance of senescent cells to apoptotic stimuli, and lack of immune system response contribute to the accumulation of senescent cells and their adverse effects in tissues. Inhibition of antiapoptotic machinery, augmented in senescent cells, by BCL-2 protein family inhibitors represents a promising approach to eliminate senescent cells from tissues. 

“In this study, with the goal of decreasing the toxicity and potential onset of resistance to senolytic BCL-2 inhibitor monotherapy, we explored the effects of combined treatment covering both BCL-2 and MCL-1 anti-apoptotic factors in human cells.”

Researchers David Rysanek, Pavla Vasicova, Jayaprakash Narayana Kolla, David Sedlak, Ladislav Andera, Jiri Bartek, and Zdenek Hodny from the Czech Academy of Sciences and the Danish Cancer Society Research Center aimed to explore synergistic and selective senolytic effects of anti-apoptotic BCL-2 family targeting compounds, particularly BH3 mimetics.

“Using human non-transformed cells RPE-1, BJ, and MRC-5 brought to ionizing radiation-, oncogene-, drug-induced and replicative senescence, we found synergy in combining MCL-1 selective inhibitors with other BH3 mimetics.”

In an attempt to uncover the mechanism of such synergy, the team revealed that the surviving subpopulation of cells resistant to individually applied ABT-737/ABT-263, MIK665, ABT-199, and S63845 BCL-2 family inhibitors showed elevated MCL-1 compared to untreated control cells indicating the presence of a subset of cells expressing high MCL-1 levels and, therefore, resistant to BCL-2 inhibitors within the original population of senescent cells.

Overall, the researchers found that combining BCL-2 inhibitors can be beneficial for eliminating senescent cells, thereby enabling use of lower, potentially less toxic, doses of drugs compared to monotherapy, thereby overcoming the resistance of the subpopulation of senescent cells to monotherapy.

“In conclusion, we propose that the selective senolytic effect of non-MCL-1 BCL-2 family inhibitors such as the known senolytics ABT-263 can be augmented by concomitant treatments with selective MCL-1 inhibitors.”
 

Corresponding Author: Jiri Bartek, Zdenek Hodny – Email: [email protected], [email protected] 

Keywords: homoharringtonine, cellular senescence, BCL-2, MCL-1, senolytics

Sign up for free Altmetric alerts about this article:  https://aging.altmetric.com/details/email_updates?id=10.18632%2Faging.204207

 

About Aging-US:

Launched in 2009, Aging (Aging-US) publishes papers of general interest and biological significance in all fields of aging research and age-related diseases, including cancer—and now, with a special focus on COVID-19 vulnerability as an age-dependent syndrome. Topics in Aging go beyond traditional gerontology, including, but not limited to, cellular and molecular biology, human age-related diseases, pathology in model organisms, signal transduction pathways (e.g., p53, sirtuins, and PI-3K/AKT/mTOR, among others), and approaches to modulating these signaling pathways.

 

Please visit our website at www.Aging-US.com​​ and connect with us:

  • SoundCloud – https://soundcloud.com/Aging-Us
  • Facebook – https://www.facebook.com/AgingUS/
  • Twitter – https://twitter.com/AgingJrnl
  • Instagram – https://www.instagram.com/agingjrnl/
  • YouTube – https://www.youtube.com/agingus​
  • LinkedIn – https://www.linkedin.com/company/aging/
  • Reddit – https://www.reddit.com/user/AgingUS
  • Pinterest – https://www.pinterest.com/AgingUS/

For media inquiries, please contact [email protected].

 

Aging (Aging-US) Journal Office

6666 E. Quaker Str., Suite 1B

Orchard Park, NY 14127

Phone: 1-800-922-0957, option 1

###



Journal

Aging-US

DOI

10.18632/aging.204207

Method of Research

Experimental study

Subject of Research

Cells

Article Title

Synergism of BCL-2 family inhibitors facilitates selective elimination of senescent cells

Article Publication Date

8-Aug-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Tracking SARS-CoV-2’s Genomic Diversity in Nigeria

October 14, 2025
Why Some Birds Shy Away from New Experiences: The Science Behind Avian Neophobia

Why Some Birds Shy Away from New Experiences: The Science Behind Avian Neophobia

October 14, 2025

Estrogen Responses Reveal Sex Differences in Macrophages

October 14, 2025

MIT Researchers Create Breakthrough System to Precisely Control Synthetic Gene Expression

October 14, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1241 shares
    Share 496 Tweet 310
  • New Study Reveals the Science Behind Exercise and Weight Loss

    105 shares
    Share 42 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    101 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    92 shares
    Share 37 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

CSF Proteomics Uncovers Biomarkers in Pediatric Meningitis

Exploring Future Research Trends in Health Systems

Safety Assessment of Hyunburikyung-tang for Dysmenorrhea

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.