• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Aging | Isoform-specific AMPK repression affects cognitive function in aged mice

Bioengineer by Bioengineer
March 7, 2023
in Chemistry
Reading Time: 3 mins read
0
Figure 6
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

“The study indicates that the aging process might have distinct impact on the signaling pathways associated with the AMPKα isoforms […]”

Figure 6

Credit: 2023 Zhou et al.

“The study indicates that the aging process might have distinct impact on the signaling pathways associated with the AMPKα isoforms […]”

BUFFALO, NY- March 7, 2023 – Aging (listed by MEDLINE/PubMed as “Aging (Albany NY)” and “Aging-US” by Web of Science) published a new research paper in Volume 15, Issue 4, entitled, “Isoform-specific effects of neuronal repression of the AMPK catalytic subunit on cognitive function in aged mice.”

AMP-activated protein kinase (AMPK) functions as a molecular sensor that plays a critical role in maintaining cellular energy homeostasis. Dysregulation of the AMPK signaling has been linked to synaptic failure and cognitive impairments. In a recent study, researchers Xueyan Zhou, Wenzhong Yang, Xin Wang, and Tao Ma from Wake Forest University School of Medicine demonstrated abnormally increased AMPK activity in the hippocampus of aged mice. The kinase catalytic subunit of AMPK exists in two isoforms α1 and α2, and their specific roles in aging-related cognitive deficits are unknown. 

“Taking advantage of the unique transgenic mice (AMPKα1/α2 cKO) recently developed by our group, we investigated how isoform-specific suppression of the neuronal AMPKα may contribute to the regulation of cognitive and synaptic function associated with aging.” 

The team found that aging-related impairment of long-term object recognition memory was improved with suppression of AMPKα1 but not AMPKα2 isoform. Moreover, aging-related spatial memory deficits were unaltered with suppression of either AMPKα isoform. Biochemical experiments showed that the phosphorylation levels of the eukaryotic initiation factor 2 α subunit (eIF2α) were specifically decreased in the hippocampus of the AMPKα1 cKO mice. They further performed large-scale unbiased proteomics analysis and revealed identities of proteins whose expression is differentially regulated with AMPKα isoform suppression. These novel findings may provide insights into the roles of AMPK signaling pathway in cognitive aging.

“In summary, the current study reported that suppression of neuronal AMPKα1 isoform can improve aging-related impairments of long-term recognition memory.”

 

Read the Full Paper: DOI: https://doi.org/10.18632/aging.204554 

Corresponding Author: Tao Ma

Corresponding Email: [email protected] 

Keywords: AMPK, aging, protein synthesis, learning and memory, proteomics

Sign up for free Altmetric alerts about this article: https://aging.altmetric.com/details/email_updates?id=10.18632%2Faging.204554

 

About Aging-US:

Launched in 2009, Aging publishes papers of general interest and biological significance in all fields of aging research and age-related diseases, including cancer—and now, with a special focus on COVID-19 vulnerability as an age-dependent syndrome. Topics in Aging go beyond traditional gerontology, including, but not limited to, cellular and molecular biology, human age-related diseases, pathology in model organisms, signal transduction pathways (e.g., p53, sirtuins, and PI-3K/AKT/mTOR, among others), and approaches to modulating these signaling pathways.

Please visit our website at www.Aging-US.com​​ and connect with us:

  • SoundCloud
  • Facebook
  • Twitter
  • Instagram
  • YouTube
  • LabTube
  • LinkedIn
  • Reddit
  • Pinterest

For media inquiries, please contact [email protected].

 

Aging (Aging-US) Journal Office

6666 E. Quaker Str., Suite 1B

Orchard Park, NY 14127

Phone: 1-800-922-0957, option 1

###



Journal

Aging-US

DOI

10.18632/aging.204554

Method of Research

Experimental study

Subject of Research

Animals

Article Title

Isoform-specific effects of neuronal repression of the AMPK catalytic subunit on cognitive function in aged mice

Article Publication Date

26-Feb-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Ice Accelerates Iron Dissolution More Than Liquid Water, Study Finds

September 22, 2025
New Tool Enhances Generative AI Models to Accelerate Discovery of Breakthrough Materials

New Tool Enhances Generative AI Models to Accelerate Discovery of Breakthrough Materials

September 22, 2025

New Study Warns Seasonal Freeze–Thaw Cycles Could Cause “Green” Biochar to Release Toxic Metals

September 20, 2025

Gravitino Emerges as a Promising New Candidate for Dark Matter

September 19, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    68 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    50 shares
    Share 20 Tweet 13
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Impact of TYG on Pregnancy Diabetes in American Women

All-D-Peptide Disassembles α-Synuclein Fibrils Directly

Unveiling Toxocara canis Excretory-Secretory Products’ Impact

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.