• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Ageing reduces the ability of regulatory T cells to enhance myelin regeneration, study finds

Bioengineer by Bioengineer
March 20, 2024
in Biology
Reading Time: 4 mins read
0
OPCs exposed to young regulatory T cells
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Regulatory T lymphocytes are cells that are responsible for regulating the immune system and have regenerative functions in many contexts, including myelin restoration. To determine if the function of these cells is impaired with age, Alerie Guzmán de la Fuente, a Miguel Servet investigator at the Institute for Health and Biomedical Research of Alicante (ISABIAL) and the Institute for Neurosciences (IN), a joint centre of the Miguel Hernández University (UMH) of Elche and the Spanish National Research Council (CSIC), has co-led a study, together with the researcher Denise Fitzgerald from Queen’s University Belfast (UK), demonstrating that, although regulatory T lymphocyte number increases with age, their ability to promote oligodendrocyte progenitor stem cells (OPCs) to form new cells to replace lost myelin is reduced.

OPCs exposed to young regulatory T cells

Credit: Instituto de Neurociencias UMH-CSIC

Regulatory T lymphocytes are cells that are responsible for regulating the immune system and have regenerative functions in many contexts, including myelin restoration. To determine if the function of these cells is impaired with age, Alerie Guzmán de la Fuente, a Miguel Servet investigator at the Institute for Health and Biomedical Research of Alicante (ISABIAL) and the Institute for Neurosciences (IN), a joint centre of the Miguel Hernández University (UMH) of Elche and the Spanish National Research Council (CSIC), has co-led a study, together with the researcher Denise Fitzgerald from Queen’s University Belfast (UK), demonstrating that, although regulatory T lymphocyte number increases with age, their ability to promote oligodendrocyte progenitor stem cells (OPCs) to form new cells to replace lost myelin is reduced.

Myelin is a protective layer present in the nervous system that surrounds nerve fibers, allowing quick and appropriate communication between neurons: “It is similar to the plastic that covers the copper in a cable,” explains Guzmán de la Fuente, and she points out that myelin loss linked to ageing or neurodegenerative diseases, such as multiple sclerosis, has serious consequences for neurological functions. In this work, published in the journal Nature Communications, the researchers have focused their study on how ageing, a key risk factor that limits myelin regeneration, affects the regulatory T cells regenerative functions in the brain and spinal cord.

To carry out this study, the researchers used mice that are between 19 and 23 months old as an animal model, which resembles an approximate age of 65 to 70 years in humans. The experts detected that the presence of regulatory T lymphocytes increases with age, however, these had lost the ability to enhance the conversion of OPCs to new oligodendrocytes that regenerate myelin upon damage.

Reversible in a young environment

The researchers wanted to figure out whether this loss in regulatory T cell function was completely irreversible. To do so, they carried out several experiments in young mice in which they replaced their young regulatory T lymphocytes by aged ones and verified that, in a young animal both, young and aged cells, have the same capacity to enhance myelin regeneration.

The results of these experiments, in which researchers from the Institute for Neurosciences and from ISABIAL Francisco Javier Rodríguez Baena and Sonia Cabeza Fernández have also participated, together with a team of researchers from the University of Cambridge (UK), Altos Laboratories (UK) and the University of Syddansk (Denmark), are very positive because they suggest that the loss of function may be reversible.

New steps to study

“Regulatory T lymphocytes are very complex because they modulate the immune system and in patients, it is not feasible to eliminate and exchange them for young cells”, says Alerie Guzmán de la Fuente and she explains that this led the team to study in depth what was different between young and aged regulatory T cells. The objective was to identify some of the mechanisms involved in the failure to enhance myelin repair associated with regulatory T cell ageing to modulate them in a more specific manner”, clarifies the researcher.

Combining a series of techniques, such as transcriptomic analysis, researchers have detected two new molecules involved in this process: Integrin alpha 2 (ITGA2) and the Melanoma Cell Adhesion Molecule (MCAM). They verified that both molecules not only decrease with ageing in regulatory T lymphocytes but are also involved in the interaction between these lymphocytes and the stem cells that regenerate myelin, the OPCs.

This finding opens new avenues of research to determine whether ITGA2 and MCAM molecules have potential as therapeutic targets. Future studies are needed to determine whether manipulation of these proteins can increase myelin regeneration in aged multiple sclerosis patients.

This work has been supported by funding from the Wellcome Trust (UK), the Biotechnology and Biological Sciences Research Council (BBSRC) from UK Research and Innovation (UKRI), The European Committee for Treatment and Research in Multiple Sclerosis (ECTRIMS), the Miguel Servet Fellowship from the Spanish Institute of Health Carlos III, the Spanish State Research Agency Plan Generación de Conocimiento 2021 grant, the Leverhulme Trust, the Generalitat Valenciana, and the Department for the Economy (Northern Ireland).

More information: https://youtu.be/ExDIYMYVj3Y



Journal

Nature Communications

DOI

10.1038/s41467-024-45742-w

Method of Research

Experimental study

Subject of Research

Animals

Article Title

Ageing impairs the regenerative capacity of regulatory T cells in mouse central nervous system remyelination

Article Publication Date

11-Mar-2024

Share13Tweet8Share2ShareShareShare2

Related Posts

blank

Evaluating Energy Digestibility in Quail Feed Ingredients

September 12, 2025

Gene Body Methylation Drives Diversity in Arabidopsis

September 12, 2025

Auranofin’s Anti-Leishmanial Effects: Lab and Animal Studies

September 12, 2025

Fungal Effector Undermines Maize Immunity by Targeting ZmLecRK1

September 12, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    65 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Insights on Menstrual Health in Eating Disorder Units

Nicotine Dependence Linked to Health Behaviors in Korean Smokers

Novel V2O5/ZnO Nanocomposite Electrodes for Energy Storage

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.