• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 31, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Afforestation with non-native trees alters island soils

Bioengineer by Bioengineer
August 6, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Thomas Marler

A healthy global debate has occurred concerning the benefits of using non-native trees for restoring some aspects of ecosystem function in degraded habitats. In many cases, the stresses associated with establishing seedlings disallow most native tree species from becoming successfully established in harsh planting sites. The tolerant non-native trees enable successes that would otherwise be unachievable.

A recent study from the Micronesian island of Guam has added to this global debate, and the results appear in the current issue of the Journal of Coastal Zone Management. The University of Guam research focused on the established use of non-native Acacia trees to re-vegetate barren scars in savanna grasslands.

"Most of these sorts of government-sponsored projects that use non-native trees are very mindful of the issue of invasiveness," said author Thomas Marler. "Non-native species that have proven restoration attributes are only used in restoration projects if they exhibit no signs of invasiveness."

In the Guam case, the Acacia trees are pursued to restore barren scars because these degraded soil surfaces do not become re-vegetated by the grass species that comprise the savanna vegetation. The barren areas are prone to increases erosion and sedimentation over time and often have the surface soil horizons completely removed. The chemistry of Guam's volcanic subsoil is inhospitable for root growth of most plants. When these subsoils become the surface soils after erosion in the barren scars, very few plants can become established.

According to Marler, the use of Acacia trees has been enticing because the species that have been used are adept at becoming established in the inhospitable sites. And their positive influence on erosion control has been proven throughout decades of projects. But no case studies have been conducted until now to shed light on what these non-native trees are doing to Guam's soil traits.

The results indicated the soil chemistry and root-zone nutrient budgets have been altered by the Acacia tree cover, and the trajectory of change is in a direction that does not conform to any of the naturally vegetated sites from Guam. As expected, the various components of the nitrogen cycle were among the traits that were most altered by these alien legume trees.

This Guam research contributes to the ongoing global discussions about the role of afforestation for revegetating tropical degraded habitats. Some restoration ecologists consider tropical grassland habitats off limits for tree-planting projects. These unique changes in Guam's tropical volcanic soils reveal one means by which non-native trees perpetrate collateral ecosystem deviations within the habitats being restored. These soil deviations often go unnoticed during restoration projects, and exemplify yet one more human activity that inadvertently alters the natural biogeochemical cycle.

###

Media Contact

Olympia Terral
[email protected]

http://www.uog.edu

Related Journal Article

http://dx.doi.org/10.4172/2473-3350.1000444

Share12Tweet8Share2ShareShareShare2

Related Posts

Unexpected Breakthrough: Student’s Research Uncovers Crucial New Insights into HPV

Unexpected Breakthrough: Student’s Research Uncovers Crucial New Insights into HPV

October 31, 2025
Sheathed Flagellum Structures Explain Vibrio cholerae Motility

Sheathed Flagellum Structures Explain Vibrio cholerae Motility

October 31, 2025

Electrostatic Shifts Drive Exocyst Subunit Diversification

October 31, 2025

Breakthrough Study Reveals Innovative Method to Target Cell Receptors, Paving the Way for Expanded Treatment Options

October 31, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1294 shares
    Share 517 Tweet 323
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    202 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    136 shares
    Share 54 Tweet 34

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Global Research Uncovers the Role of Bacteria in Shaping Lake and Reservoir Health

Comparing Health Worker and Non-Worker Education on Contraception

Creating Human Kidney Organoids for Porcine Transplants

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.