• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Afforestation with non-native trees alters island soils

Bioengineer by Bioengineer
August 6, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Thomas Marler

A healthy global debate has occurred concerning the benefits of using non-native trees for restoring some aspects of ecosystem function in degraded habitats. In many cases, the stresses associated with establishing seedlings disallow most native tree species from becoming successfully established in harsh planting sites. The tolerant non-native trees enable successes that would otherwise be unachievable.

A recent study from the Micronesian island of Guam has added to this global debate, and the results appear in the current issue of the Journal of Coastal Zone Management. The University of Guam research focused on the established use of non-native Acacia trees to re-vegetate barren scars in savanna grasslands.

"Most of these sorts of government-sponsored projects that use non-native trees are very mindful of the issue of invasiveness," said author Thomas Marler. "Non-native species that have proven restoration attributes are only used in restoration projects if they exhibit no signs of invasiveness."

In the Guam case, the Acacia trees are pursued to restore barren scars because these degraded soil surfaces do not become re-vegetated by the grass species that comprise the savanna vegetation. The barren areas are prone to increases erosion and sedimentation over time and often have the surface soil horizons completely removed. The chemistry of Guam's volcanic subsoil is inhospitable for root growth of most plants. When these subsoils become the surface soils after erosion in the barren scars, very few plants can become established.

According to Marler, the use of Acacia trees has been enticing because the species that have been used are adept at becoming established in the inhospitable sites. And their positive influence on erosion control has been proven throughout decades of projects. But no case studies have been conducted until now to shed light on what these non-native trees are doing to Guam's soil traits.

The results indicated the soil chemistry and root-zone nutrient budgets have been altered by the Acacia tree cover, and the trajectory of change is in a direction that does not conform to any of the naturally vegetated sites from Guam. As expected, the various components of the nitrogen cycle were among the traits that were most altered by these alien legume trees.

This Guam research contributes to the ongoing global discussions about the role of afforestation for revegetating tropical degraded habitats. Some restoration ecologists consider tropical grassland habitats off limits for tree-planting projects. These unique changes in Guam's tropical volcanic soils reveal one means by which non-native trees perpetrate collateral ecosystem deviations within the habitats being restored. These soil deviations often go unnoticed during restoration projects, and exemplify yet one more human activity that inadvertently alters the natural biogeochemical cycle.

###

Media Contact

Olympia Terral
[email protected]

http://www.uog.edu

Related Journal Article

http://dx.doi.org/10.4172/2473-3350.1000444

Share12Tweet8Share2ShareShareShare2

Related Posts

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026

AI-Enhanced Optical Coherence Photoacoustic Microscopy Revolutionizes 3D Cancer Model Imaging

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Scientists Identify SARS-CoV-2 PLpro and RIPK1 Inhibitors Showing Potent Synergistic Antiviral Effects in Mouse COVID-19 Model

Neg-Entropy: The Key Therapeutic Target for Chronic Diseases

Multidisciplinary Evidence-Based Guidelines for Therapeutic Drug Monitoring of Biologics in Inflammatory Bowel Disease

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.