• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Aerospace engineer to get tough on ceramics with Office of Naval Research grant

Bioengineer by Bioengineer
May 30, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Namiko Yamamoto, assistant professor of aerospace engineering at Penn State, was recently awarded $447,663 through the Office of Naval Research (ONR) Sea-Based Aviation Airframe Structures and Materials program to study fundamental toughening mechanisms of novel ceramic composites and their use as alternative materials for high-temperature applications in the aerospace industry.

Through her project titled "Multi-functional Nano-porous Ceramics," Yamamoto, in collaboration with Jogender Singh, professor in the Department of Materials Science and Engineering and chief scientist in Penn State's Applied Research Laboratory, will seek to understand how the introduction of nano-pores into ceramics contributes to enhanced fracture toughness and increased damage tolerance, with minimal compromising of the material's strength.

"Tougher ceramic materials are in high demand for numerous aerospace applications that require adequate mechanical strength, stability in extreme environments and lightweight materials," said Yamamoto. "Although ceramics exist that meet those requirements, their applications as bulk structural materials are currently limited to their brittleness and low fracture toughness."

Ceramics have a unique combination of material properties, such as low density, high strength at high temperatures, wear resistance, corrosion resistance and low thermal and electrical conductivities. However, when high stress is placed on them, premature or catastrophic failure can occur.

Recently, some unique deformation behaviors have been observed when nano-porous ceramics are indented, including shear banding of collapsed pores. If controlled, this quasi-plastic deformation could potentially contribute to intrinsic toughening of ceramics and effectively mitigate crack initiation and propagation.

"Systematic understanding is currently missing about shear banding and its relation to fracture toughness of nano-porous ceramics," said Yamamoto. "By conducting multi-scale parametric studies, we hope to gain the knowledge that is critical to the acceleration of practical fabrication and use of macro-scale, nano-porous ceramic materials with increased damage tolerance. Also, through field-assisted sintering technology, we will pursue scalable manufacturing of such nano-porous ceramics."

If successful, the toughened nano-porous ceramics could find use as alternative materials for high-temperature and high-shear loading applications in aerospace engineering parts, helicopter rotor heads, ball-point bearings, gear boxes, thermal and physical protection layers, abrasive cutting tools and more.

Funding for the project will span three years and will support ONR's interest in the field of Sea-Based Aviation Airframe Structures and Materials.

Yamamoto also received an ONR grant in 2016 for her research proposal titled "1D-Patterned Nanocomposites Structured Using Oscillating Magnetic Fields."

###

Media Contact

Chris Spallino
[email protected]
814-867-6223
@penn_state

http://live.psu.edu

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Revolutionary CMOS Imager Enables Single-Neuron Brain Imaging

Revolutionary CMOS Imager Enables Single-Neuron Brain Imaging

October 27, 2025

Perspectives on Person-Centered Care in Heart Disease

October 27, 2025

Impact of Hydrothermal Treatment on Waste Fermentation

October 27, 2025

UMass Amherst Secures $17.9 Million in NIH Grants to Boost Opioid Overdose and HIV Prevention Research

October 27, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1286 shares
    Share 514 Tweet 321
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    310 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    197 shares
    Share 79 Tweet 49
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    134 shares
    Share 54 Tweet 34
>

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revolutionary CMOS Imager Enables Single-Neuron Brain Imaging

Perspectives on Person-Centered Care in Heart Disease

Impact of Hydrothermal Treatment on Waste Fermentation

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.