• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Advances in thermoelectric power generation possible with various ‘metal chalcogenide’ materials, recent review shows

Bioengineer by Bioengineer
November 3, 2022
in Chemistry
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists on the forefront of the rapidly growing field of thermoelectric power generation have found that metals and metalloid compounds built upon antimony, lead, copper, tin, and bismuth hold the potential to aid in developing more efficient energy recapture materials and devices – a critical area of need as the global scientific community seeks ways of reducing greenhouse gas emissions.

Effect of isovalent doping in metal chalcogenides; from design to application

Credit: Nano Research Energy, Tsinghua University Press

Scientists on the forefront of the rapidly growing field of thermoelectric power generation have found that metals and metalloid compounds built upon antimony, lead, copper, tin, and bismuth hold the potential to aid in developing more efficient energy recapture materials and devices – a critical area of need as the global scientific community seeks ways of reducing greenhouse gas emissions.

 

A research team led by Professor Lawrence Wu in the Department of Materials Science and Engineering at City University of Hong published a review examining recent studies that have sought to discover more efficient and effective thermoelectric materials.

 

The review was published on October 21  in Nano Research Energy.

 

The studies included in the research team’s review focused specifically on studies that conducted experiments with substituting different metal compounds called chalcogenides, which are common across the renewable energy sector and found in applications such as photovoltaic cells, batteries, sensors, and fuel cells, to name a few. Such compounds have in common that they all tend to function as a catalyst among two or more forms of energy.

 

Though thermoelectric materials have been known to exist since the late 1800’s, the idea of harnessing their ability to recapture heat energy as electrical current wasn’t more intensely studied until the mid-20th century, when the scientific community began to explore space and needed ways of powering satellites and other space vehicles for long periods.

 

The review notes that about 90 percent of energy consumed by human activities is generated by thermal processes and eventually dissipates as heat, illustrating the vast opportunity inherent to developing better ways of capturing waste heat at factories, power plants, from vehicles, and even building exteriors in hot climates.

 

“Energy generation is likely to be the foremost scientific challenge in years to come. The adverse effect of fossil fuels on the environment is driving research to explore alternative energy sources,” Wu said. “Studies have demonstrated that renewables can offer a promising strategy to curb the problem, among which thermoelectric technology stands tall.”

 

Wu and his team examined studies on a technique within thermoelectric material development called isovalent substitution, which refers to the mechanism of substituting a host atom with an impurity atom when the impurity atom possesses the same valence number as the host atom. “This technique has opened up a new approach that leads to higher charge density and electron mobility across these novel materials,” Wu said. “The goal is to recapture as much energy as possible in the form of an electric charge, and these thermoelectric materials – particularly one we examined based on the elements bismuth and cerium – fit that bill.”

 

Other metal chalcogenides built on lead, gallium, copper, germanium, and tin demonstrated performance characteristics that rivaled each other, depending on temperature, pressure, and type of isovalent substitution. Bismuth-tellurium and a bismuth-antimony-tellurium compound stood out as the top thermoelectric material the team found among the studies reviewed.

 

“In conclusion, the system of isovalent substitution is an effective technique of doping to enhance the thermoelectric material performance,” Wu said. “What this tells us is that there is still a vast about of untapped potential for developing materials that will increase the efficiency and range of electric vehicles, help governments and industry cut down on fossil fuel use, and even pave the way for sustaining future human colonies on the moon and on Mars, where energy production and storage alternatives to solar will be necessary. We plan to continue monitoring new developments in the field of thermoelectric generation.”

 

##

 

About Nano Research Energy 

 

Nano Research Energy is launched by Tsinghua University Press, aiming at being an international, open-access and interdisciplinary journal. We will publish research on cutting-edge advanced nanomaterials and nanotechnology for energy. It is dedicated to exploring various aspects of energy-related research that utilizes nanomaterials and nanotechnology, including but not limited to energy generation, conversion, storage, conservation, clean energy, etc. Nano Research Energy will publish four types of manuscripts, that is, Communications, Research Articles, Reviews, and Perspectives in an open-access form.

 

About SciOpen 

 

SciOpen is a professional open access resource for discovery of scientific and technical content published by the Tsinghua University Press and its publishing partners, providing the scholarly publishing community with innovative technology and market-leading capabilities. SciOpen provides end-to-end services across manuscript submission, peer review, content hosting, analytics, and identity management and expert advice to ensure each journal’s development by offering a range of options across all functions as Journal Layout, Production Services, Editorial Services, Marketing and Promotions, Online Functionality, etc. By digitalizing the publishing process, SciOpen widens the reach, deepens the impact, and accelerates the exchange of ideas.

 



Journal

Nano Research Energy

DOI

10.26599/NRE.2022.9120034

Article Title

Isovalent substitution in metal chalcogenide materials for improving thermoelectric power generation – A critical review

Article Publication Date

21-Oct-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Why Beer Foam Stays So Stable: The Science Behind the Perfect Pour

Why Beer Foam Stays So Stable: The Science Behind the Perfect Pour

August 26, 2025
SwRI Scientist Heads Science Team for New NASA Heliophysics AI Foundation Model

SwRI Scientist Heads Science Team for New NASA Heliophysics AI Foundation Model

August 26, 2025

Expanding Azole Chemistry with Precise N-Alkylation

August 26, 2025

Advancing Green Technology with More Efficient and Reliable SiC Devices

August 26, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    148 shares
    Share 59 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

High-Performance MoS2/rGO Nanocomposite for Oxygen Evolution

Exploring Depression’s Impact on Blood Sugar Control

Polyions and Polyelectrolyte Complexes: Advancements for Brain Therapies

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.