• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Advances in pediatric sepsis biomarkers: A pediatric investigation review

Bioengineer by Bioengineer
February 6, 2024
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Sepsis is a life-threatening condition triggered by a severe infection. Severe sepsis and septic shock are progressive stages of sepsis, associated with multi-organ failure and death. Mortality for pediatric sepsis ranges from 4% to 50%, depending on illness severity, risk factors, and geographic location. The risk of recurrence after surviving severe sepsis is significantly high in most cases.

Omics biomarkers for timely management of pediatric sepsis

Credit: Dan Yu, Suyun Qian from Capital Medical University

Sepsis is a life-threatening condition triggered by a severe infection. Severe sepsis and septic shock are progressive stages of sepsis, associated with multi-organ failure and death. Mortality for pediatric sepsis ranges from 4% to 50%, depending on illness severity, risk factors, and geographic location. The risk of recurrence after surviving severe sepsis is significantly high in most cases.

One of the persistent challenges in treating sepsis is the lack of timely diagnosis. Non-symptomatic children can rapidly present morbid symptoms in a short span of 36 to 72 hours. Current practices rely on broad-ranged biomarkers such as CRP (C-reactive protein, an inflammation marker), PCT (procalcitonin, a pro-hormone), and lactate for the detection of sepsis. Despite recent advances in science and technology, there is currently no singular diagnostic test that reliably detects sepsis.

Their review, published on 21 November 2023 in Pediatric Investigation, systematically classifies biomarkers according to the sepsis progression stage in patient samples and provides a comprehensive overview of research advancements across various omics levels. The study authors emphasize that timely and precise identification and treatment are crucial for minimizing the risk of sepsis and enhancing the prognosis. Multi-omics profiling technology, encompassing genomics, transcriptomics, proteomics, and metabolomics, is employed to identify reliable biomarkers.

The combined summary is as follows: Genomics delves into genetic variations linked to sepsis susceptibility, spotlighting primary immunodeficiency disease (PID) gene variants, along with polymorphisms in genes such as PAI-1 and CD143. Transcriptomics, focusing on transcription patterns, identifies diagnostic targets of some mRNAs or miRNAs. For proteomics, it was observed that IL-27 screening combined with procalcitonin enhanced the predictability of sepsis screening. The review also took stock of metabolites, chemicals released by cells during cellular processes, as potential biomarkers. Similar to lactate, which has already been established as a sepsis biomarker, 2-hydroxybutyrate, 2-hydroxyisovalerate, creatine, and glucose, are common metabolites that may detect sepsis severity. However, these potential sepsis biomarkers still require validation in a large patient cohort in the future.

An ideal sepsis biomarker should enable the detection of the infection group, provide insights into the progression stage of sepsis, and highlight the susceptibility of high-risk patients. Early detection of sepsis can aid in targeted treatment rather than broad-spectrum antibiotic, antiviral, or antifungal therapies.

The complexity of genomic factors and analysis of differentially expressed genes and co-expression networks reveals potential biomarkers for distinguishing pediatric sepsis patients. While high-throughput screening identifies immune factors and gene expression patterns, further validation and larger sample sizes are needed for robust biomarker assessment in pediatric sepsis. The integration of multilevel omics data, aided by artificial intelligence, holds promise for discovering sepsis biomarkers. While no single biomarker serves as the gold standard, a panel of genes or markers may enhance early diagnosis, treatment, and prognosis, emphasizing the need for further research and clinical validation.

 

***

 

Reference

 

DOI: https://doi.org/10.1002/ped4.12405

 

About the Author
Dr. Suyun Qian, MD, is the Honorary Director of the Pediatric Intensive Care Unit at Beijing Children’s Hospital, National Center for Children’s Health, China. She leads extensive research in critical care, specializing in sepsis, nutrition therapy, and viral-associated encephalopathy.

Dr. Dan Yu, PhD, is an associated professor at the Beijing Pediatric Research Institute at Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, China. Her research focus on the study of the pathogenesis mechanism and diagnostic methods of pediatric infectious diseases.



Journal

Pediatric Investigation

DOI

10.1002/ped4.12405

Method of Research

Systematic review

Subject of Research

People

Article Title

Multilevel omics for the discovery of biomarkers in pediatric sepsis

Article Publication Date

21-Nov-2023

COI Statement

The authors declare no conflict of interest

Share12Tweet8Share2ShareShareShare2

Related Posts

Synaptic Loss and Connectivity Drops in Depressed PD Mice

Synaptic Loss and Connectivity Drops in Depressed PD Mice

August 13, 2025
blank

Arginine-Infused Dentifrices Demonstrate Significant Reduction in Childhood Dental Caries

August 13, 2025

Author Correction: New Analysis Clarifies Parkinson’s Trial Benefits

August 13, 2025

Micromovement Analysis and Reaction Times Offer New Insights into Predicting Alcohol Relapse After Treatment

August 13, 2025

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    58 shares
    Share 23 Tweet 15
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Synaptic Loss and Connectivity Drops in Depressed PD Mice

Arginine-Infused Dentifrices Demonstrate Significant Reduction in Childhood Dental Caries

Nationwide Study Shows PSMA PET/CT Before Salvage Radiotherapy Enhances Overall Survival in Prostate Cancer Patients

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.