• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Addressing societal concerns of genetic determinism of human behavior by linking environmental influences and genetic research

Bioengineer by Bioengineer
February 27, 2024
in Health
Reading Time: 3 mins read
0
Addressing societal concerns of genetic determinism of human behavior by linking environmental influences and genetic research
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

It has long been known that there is a complex interplay between genetic factors and environmental influences in shaping behavior. Recently it has been found that genes governing behavior in the brain operate within flexible and contextually responsive regulatory networks. However, conventional genome-wide association studies (GWAS) often overlook this complexity, particularly in humans where controlling environmental variables poses challenges.

Addressing societal concerns of genetic determinism of human behavior by linking environmental influences and genetic research

Credit: Matt Hudson created this image using Midjourney and owns it. They are making it available under CC-BY 4.0 (CC-BY 4.0, https://creativecommons.org/licenses/by/4.0/)

It has long been known that there is a complex interplay between genetic factors and environmental influences in shaping behavior. Recently it has been found that genes governing behavior in the brain operate within flexible and contextually responsive regulatory networks. However, conventional genome-wide association studies (GWAS) often overlook this complexity, particularly in humans where controlling environmental variables poses challenges.

In a new perspective article publishing February 27th in the open-access journal PLOS Biology by researchers from the University of Illinois Urbana-Champaign and Rutgers University, US, the importance of integrating environmental effects into genetic research is underscored. The authors discuss how failure to do so can perpetuate deterministic thinking in genetics, as historically observed in the justification of eugenics movements and, more recently, in cases of racially motivated violence.

The authors propose expanding GWAS by incorporating environmental data, as demonstrated in studies on aggression in fruit flies, in order to get a broader understanding of the intricate nature of gene-environment interactions. Additionally, they advocate for better integration of insights from animal studies into human research. Animal experiments reveal how both genotype and environment shape brain gene regulatory networks and subsequent behavior, and these findings could better inform similar experiments with people. 

“Advances in genomic technology have really illustrated how changes in the environment lead to changes not only in behavior, but in the expression of genes, in a way that’s not determined just by heredity,” said co-author Matthew Hudson, professor of crop sciences at Illinois. “We now understand that even the same genes can function very differently across individuals depending on their expression.”

Furthermore, the authors stress the importance of multidisciplinary collaboration to understand the roots of behavior, especially among the animal and human research communities. Co-author Rina Bliss, professor of sociology at Rutgers, added, “We really need these kinds of collaborations among social scientists and biologists to illuminate the complexity of gene-environment interactions, especially as they relate to human behavior.” The article also suggests that emerging technologies such as brain organoids and new forms of brain imaging will be necessary to elucidate the molecular mechanisms linking genetic and environmental influences on behavior.

Ultimately, the authors stress that a paradigm shift is needed in human social and behavioral genomics towards a nuanced comprehension of gene-environment interactions. “Studying the roots of behavior holds great potential for insights that can help better understand brain function, in health and disease. We hope this article helps researchers to make the most of the opportunities while avoiding reductionist pitfalls,” said coauthor Gene Robinson, Director of the Carl R. Woese Institute for Genomic Biology and professor of entomology and neuroscience at Illinois.

The authors suggest that a holistic perspective and fostering interdisciplinary collaboration could help researchers navigate the complexities of human behavior, while mitigating the risks associated with deterministic thinking in genetics.

#####

In your coverage, please use this URL to provide access to the freely available paper in PLOS Biology: http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3002510

Citation: Robinson GE, Bliss R, Hudson ME (2024) The genomic case against genetic determinism. PLoS Biol 22(2): e3002510. https://doi.org/10.1371/journal.pbio.3002510

Author Countries: United States

Funding: The authors received no specific funding for this work.



Journal

PLoS Biology

DOI

10.1371/journal.pbio.3002510

Method of Research

Commentary/editorial

Subject of Research

Not applicable

Article Publication Date

27-Feb-2024

COI Statement

Competing interests: The authors have declared that no competing interests exist.

Share12Tweet8Share2ShareShareShare2

Related Posts

AI-Driven Design of MMP-13 Inhibitors via Docking

October 2, 2025

VISTA Regulation in Tumor Cells Affects NSCLC Immunity

October 2, 2025

Barriers Facing Roma Women in Primary Healthcare

October 2, 2025

$3.7 Million NIH Grant Supports IU Research on ADHD Medication’s Impact on Substance Use in Youth

October 2, 2025

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    91 shares
    Share 36 Tweet 23
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    79 shares
    Share 32 Tweet 20
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    64 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Haya Farmers’ Views on Climate Change Risks in Agriculture

Exploring Amanita Mitochondrial Genomes and Phylogeny

AI-Driven Design of MMP-13 Inhibitors via Docking

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.