• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Addressing global energy needs with ideal electrocatalysts 

Bioengineer by Bioengineer
March 26, 2024
in Chemistry
Reading Time: 2 mins read
0
Vladislav Ivaništšev, Nadezda Kongi, Ritums Cepitis
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers from the University of Tartu and the University of Copenhagen have proposed the theoretical description of an ideal electrocatalysis process, which, if implemented, could double the efficiency of energy conversion and storage devices.  

Vladislav Ivaništšev, Nadezda Kongi, Ritums Cepitis

Credit: Vladislav Ivaništšev, Nadezda Kongi, Ritums Cepitis. Photo courtesy of Jaak Kikas.

Researchers from the University of Tartu and the University of Copenhagen have proposed the theoretical description of an ideal electrocatalysis process, which, if implemented, could double the efficiency of energy conversion and storage devices.  

As the world seeks sustainable solutions to meet escalating energy demands, a collaborative team of researchers from the Universities of Tartu and Copenhagen has proposed an innovative approach to overcome long-standing limitations in oxygen electrocatalysis. Oxygen electrocatalysis involves reactions, such as oxygen evolution and reduction reaction, which are crucial in various electrochemical energy conversion and storage systems like water splitting, fuel cells, and metal-air batteries. These reactions involve breaking and forming multiple chemical bonds, which typically have high activation energies. This makes it difficult to find catalysts that can effectively lower these energy barriers and facilitate the reactions. To overcome these limitations and accelerate the transition to a hydrogen economy, novel paradigm for catalyst design is required. Despite theoretical constraints, the research team has discovered a practical method to surpass the limitations.  

In a recent article published in ACS Catalysis Science and Technology, the research team introduces an innovative concept of geometry-adaptive electrocatalysis. This approach utilises catalysts that dynamically adjust their geometry during a reaction, bypassing the theoretical limitations that have hindered progress in oxygen electrocatalysis for decades.  

“This concept has the potential to revolutionise the field of oxygen electrocatalysis,” says Ritums Cepitis, the principal author of the study, a 4th year PhD student at KongiLab at the Institute of Chemistry. “Our model demonstrates that ideal catalysis is within reach, and in practical terms, it could potentially double the efficiency of energy conversion and storage technologies,” adds Dr- V. Ivaništšev, who developed the idea with Prof. J. Rossmeisl during a fellowship at the University of Copenhagen.   

“Now, our group is ready to put this approach into action. The laboratory work will demand even greater creativity than the modelling phase, but we already see promising advancements,” says Associate Professor Nadežda Kongi, the leader of the Inorganic Functional Materials research group (KongiLab) at the University of Tartu.   

The full article was published in Catalysis Science & Technology: https://doi.org/10.1039/D4CY00036F. 

Additional information: Nadežda Kongi, [email protected] , www.kongilab.com  



Journal

Catalysis Science & Technology

DOI

10.1039/D4CY00036F.

Method of Research

Computational simulation/modeling

Subject of Research

Not applicable

Article Title

Bypassing the scaling relations in oxygen electrocatalysis with geometry-adaptive catalysts

Article Publication Date

8-Mar-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

September 11, 2025
Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

September 11, 2025

Scientists reinvigorate pinhole camera technology for advanced next-generation infrared imaging

September 11, 2025

BeAble Capital Invests in UJI Spin-Off Molecular Sustainable Solutions to Advance Disinfection and Sterilization Technologies

September 11, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    64 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Nanomedicine: A New Frontier in Targeting Metastasis

Fungal Effector Undermines Maize Immunity by Targeting ZmLecRK1

New Phthalide Compounds Show Promise as Antifungal Agents

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.